Abstract:
A technique for fabricating a dual damascene interconnect structure using a low dielectric constant material as a dielectric layer or layers. A low dielectric constant (low-.epsilon.) dielectric material is used to form an inter-level dielectric (ILD) layer between metallization layers and in which via and trench openings are formed in the low-.epsilon. ILD. The dual damascene technique allows for both the via and trench openings to be filled at the same time.
Abstract:
A method of utilizing electroless copper deposition to form interconnects on a semiconductor wafer. Once a via or a trench is formed in a dielectric layer, a titanium nitride (TiN) or tantalum (Ta) barrier layer is blanket deposited. Then, a contact displacement technique is used to form a thin activation seed layer of copper on the barrier layer. An electroless deposition technique is then used to auto-catalytically deposit copper on the activated barrier layer. The electroless copper deposition continues until the via/trench is filled. Subsequently, the surface is polished by an application of chemical-mechanical polishing (CMP) to remove excess copper and barrier material from the surface, so that the only copper and barrier material remaining are in the via/trench openings. Then an overlying silicon nitride (SiN) layer is formed above the exposed copper in order to form a dielectric barrier layer. The copper interconnect is fully encapsulated from the adjacent material by the TiN (or Ta) and the SiN layers.
Abstract:
An electroless deposition apparatus and a method of electroless deposition that uses a single process chamber for performing multiple processes by moving through the process chamber a variety of fluids one at a time in a sequential order.
Abstract:
A method for utilizing electroless copper deposition to form interconnects on a semiconductor. Once a via or a trench is formed in a dielectric layer, a titanium nitride (TiN) or tantalum (Ta) barrier layer is deposited. Then, a catalytic copper seed layer is conformally blanket deposited in vacuum over the barrier layer. Next, without breaking the vacuum, an aluminum protective layer is deposited onto the catalytic layer to encapsulate and protect the catalytic layer from oxidizing. An electroless deposition technique is then used to auto-catalytically deposit copper on the catalytic layer. The electroless deposition solution dissolves the overlying protective layer to expose the surface of the underlying catalytic layer. The electroless copper deposition occurs on this catalytic surface, and continues until the via/trench is filled. Subsequently, the copper and barrier material are polished by an application of chemical-mechanical polishing (CMP) to remove excess copper and barrier material from the surface, so that the only copper and barrier material remaining are in the via/trench openings. Then an overlying silicon nitride (SiN) layer is formed above the exposed copper in order to form a dielectric barrier layer. The copper interconnect is fully encapsulated from the adjacent material by the TiN (or Ta) barrier layer and the overlying SiN layer.
Abstract:
A technique for electrolessly depositing a CoWP barrier material on to copper and electrolessly depositing copper onto a CoWP barrier material to prevent copper diffusion when forming layers and/or structures on a semiconductor wafer.
Abstract:
A technique for fabricating a dual damascene interconnect structure using a low dielectric constant material as a dielectric layer or layers. A low dielectric constant (low-.di-elect cons.) dielectric material is used to form an inter-level dielectric (ILD) layer between metallization layers and in which via and trench openings are formed in the low-.di-elect cons. ILD. The dual damascene technique allows for both the via and trench openings to be filled at the same time.
Abstract:
A method or utilizing electroless copper deposition to selectively form encapsulated copper plugs to connect conductive regions on a semiconductor. A via opening in an inter-level dielectric (ILD) provides a path for connecting two conductive regions separated by the ILD. Once the underlying metal layer is exposed by the via opening, a SiN or SiON dielectric encapsulation layer is formed along the sidewalls of the via. Then, a contact displacement technique is used to form a thin activation layer of copper on a barrier metal, such as TiN, which is present as a covering layer on the underlying metal layer. After the contact displacement of copper on the barrier layer at the bottom of the via, an electroless copper deposition technique is then used to auto-catalytically deposit copper in the via. The electroless copper deposition continues until the via is almost filled, but leaving sufficient room at the top in order to form an upper encapsulation layer. The SiN or SiON sidewalls, the bottom barrier layer and the cap barrier layer function to fully encapsulate the copper plug in the via. The plug is then annealed.
Abstract:
A technique for utilizing an electric field to initiate electroless deposition of a material to form layers and/or structures on a semiconductor wafer. The wafer is disposed between a positive electrode and a negative electrode and disposed so that its deposition surface faces the positive electrode. A conductive surface on the wafer is then subjected to an electroless copper deposition solution. When copper is the conductive material being deposited, positive copper ions in the solution are repelled by the positive electrode and attracted by the negatively charged wafer surface. Once physical contact is made, the copper ions dissipate their charges by accepting electrons from the conductive surface, thereby forming copper atoms on the surface. The deposited copper have the catalytic properties so that when a reductant in the solution is absorbed at the copper sites and then oxidized, additional electrons are released into the conductive surface. The formation of the initial layer of copper functions as a seed layer for further electroless growth of copper. The same electroless deposition solution can be used for both the initial activation layer and the additional autocatalytic growth on to the seed layer.
Abstract:
A stabilized flour, such as stabilized whole grain wheat flour, exhibiting unexpectedly superior extended shelf life and superior biscuit baking functionality, may be produced with or without heating to inhibit lipase by subjecting whole grains or a bran and germ fraction or component to treatment with a lipase inhibitor, such as an acid or green tea extract. Treatment with the lipase inhibitor may be performed during tempering of the whole grains or berries or during hydration of the bran and germ fraction or component.
Abstract:
Systems and methods for visualization of a call over network (CON) are provided. In some embodiments, the visualization of a call over network may be effectuated by three functionalities: a readiness dialog box that enables the facilitation of the call, the inclusion of visualization and participant features within the call, and a visualized summary after the call. The readiness dialog box is presented to the callers prior to the onset of the call. It presents the other participant's and their status. It also enables the caller to send messages (both preconfigured and customized) to the other participants. Once sufficient participants have joined, the call may start. Once the call starts, it may be visualized by displaying on a single or multi channels, which caller is speaking, and any additional indications they may be providing. The caller may likewise be provided a set of participant features that allow the user to interact with the call. After the call concludes, a visualized summary of the call can then be generated. The summary includes any of the recording, transcriptions, scenario information, speaker information and the duration each speaker was talking, etc.