Abstract:
Light emitter devices for light emitting diodes (LED chips) and related methods are disclosed. In one embodiment a light emitter device includes a substrate and a chip on board (COB) array of LED chips disposed over the substrate. A layer having wavelength conversion material provided therein is disposed over the array of LED chips for forming a light emitting surface from which light is emitted upon activation of the LED chips. In some aspects, the wavelength conversion material includes phosphoric or lumiphoric material that is settled and/or more densely concentrated within one or more predetermined portions of the layer. In some aspects, the devices and methods provided herein can comprise a lumen density of approximately 30 lm/mm2 or greater.
Abstract:
Light emitter devices for light emitting diodes (LED chips) and related methods are disclosed. In one embodiment a light emitter device includes a substrate and a chip on board (COB) array of LED chips disposed over the substrate. A layer having wavelength conversion material provided therein is disposed over the array of LED chips for forming a light emitting surface from which light is emitted upon activation of the LED chips. In some aspects, the wavelength conversion material includes phosphoric or lumiphoric material that is settled and/or more densely concentrated within one or more predetermined portions of the layer. In some aspects, the devices and methods provided herein can comprise a lumen density of approximately 30 lm/mm2 or greater.
Abstract:
A semiconductor light emitting device includes an LED and a recipient luminophoric medium that includes a first narrow-spectrum luminescent material that down-converts a first portion of the radiation emitted by the LED to radiation having a first peak wavelength in the green-yellow color range and a second narrow-spectrum luminescent material that down-converts a second portion of the radiation emitted by the LED to radiation having a second peak wavelength in an orange-red color range. The first and second luminescent materials and any additional narrow-spectrum luminescent materials that are included in the recipient luminophoric medium generate at least 80% of the light emitted by the recipient luminophoric medium. A CRI value of the combined light emitted by the semiconductor light emitting device is at least 60 and less than 80.
Abstract:
Solid state lighting components are provided with improved color rendering, improved color uniformity, and improved directional lighting, and that are suitable for use in high output lighting applications and can be used in place of CDMH bulb lighting. Exemplary solid state lighting components include a substrate comprising a light emitter surface and or more light emitters disposed on and/or over the light emitter surface. Exemplary components include a light directing optic and/or a diffusing optic for mixing light. The light directing optic may be disposed at least partially around a perimeter of the light emitter surface. The diffusing optic may be disposed between portions of the light directing optic and spaced apart from the light emitter surface.
Abstract:
Solid state lighting components are provided with improved color rendering, improved color uniformity, and improved directional lighting, and that are suitable for use in high output lighting applications and can be used in place of CDMH bulb lighting. Exemplary solid state lighting components include a substrate comprising a light emitter surface and or more light emitters disposed on and/or over the light emitter surface. Exemplary components include a light directing optic and/or a diffusing optic for mixing light. The light directing optic may be disposed at least partially around a perimeter of the light emitter surface. The diffusing optic may be disposed between portions of the light directing optic and spaced apart from the light emitter surface.
Abstract:
Solid state lighting apparatuses, systems, and related methods for improved heat distribution are described. A solid state lighting apparatus can include a substrate and an array of solid state light emitters of varying power arranged on or over the substrate, wherein a predetermined group of the solid state light emitters includes solid state light emitters non-uniformly spaced apart from one another. A method of providing a solid stare lighting apparatus can include providing a substrate, and mounting an array of solid state light emitters of varying power on or over the substrate such that a predetermined group of the solid state light emitters includes solid state light emitters non-uniformly spaced apart from one another.
Abstract:
Light emitter devices for light emitting diodes (LED chips) and related methods are disclosed. In one embodiment a light emitter device includes a substrate and a chip on board (COB) array of LED chips disposed over the substrate. A layer having wavelength conversion material provided therein is disposed over the array of LED chips for forming a light emitting surface from which light is emitted upon activation of the LED chips. In some aspects, the wavelength conversion material includes phosphoric or lumiphoric material that is settled and/or more densely concentrated within one or more predetermined portions of the layer. In some aspects, the devices and methods provided herein can comprise a lumen density of approximately 30 lm/mm2 or greater.
Abstract:
Solid state lighting components are provided with improved color rendering, improved color uniformity, and improved directional lighting, and that are suitable for use in high output lighting applications and can be used in place of CDMH bulb lighting. Exemplary solid state lighting components include a substrate comprising a light emitter surface and or more light emitters disposed on and/or over the light emitter surface. Exemplary components include a light directing optic and/or a diffusing optic for mixing light. The light directing optic may be disposed at least partially around a perimeter of the light emitter surface. The diffusing optic may be disposed between portions of the light directing optic and spaced apart from the light emitter surface.
Abstract:
Solid state lighting components are provided with improved color rendering, improved color uniformity, and improved directional lighting, and that are suitable for use in high output lighting applications and can be used in place of CDMH bulb lighting. Exemplary solid state lighting components include a substrate comprising a light emitter surface and or more light emitters disposed on and/or over the light emitter surface. Exemplary components include a light directing optic and/or a diffusing optic for mixing light. The light directing optic may be disposed at least partially around a perimeter of the light emitter surface. The diffusing optic may be disposed between portions of the light directing optic and spaced apart from the light emitter surface.
Abstract:
Solid state lighting apparatuses, systems, and related methods for improved heat distribution are described. A solid state lighting apparatus can include a substrate and an array of solid state light emitters of varying power arranged on or over the substrate, wherein a predetermined group of the solid state light emitters includes solid state light emitters non-uniformly spaced apart from one another. A method of providing a solid stare lighting apparatus can include providing a substrate, and mounting an array of solid state light emitters of varying power on or over the substrate such that a predetermined group of the solid state light emitters includes solid state light emitters non-uniformly spaced apart from one another.