摘要:
Simplified LED chip architectures or chip builds are disclosed that can result in simpler manufacturing processes using fewer steps. The LED structure can have fewer layers than conventional LED chips with the layers arranged in different ways for efficient fabrication and operation. The LED chips can comprise an active LED structure. A dielectric reflective layer is included adjacent to one of the oppositely doped layers. A metal reflective layer is on the dielectric reflective layer, wherein the dielectric and metal reflective layers extend beyond the edge of said active region. By extending the dielectric layer, the LED chips can emit with more efficiency by reflecting more LED light to emit in the desired direction. By extending the metal reflective layer beyond the edge of the active region, the metal reflective layer can serve as a current spreading layer and barrier, in addition to reflecting LED light to emit in the desired direction. The LED chips can also comprise self-aligned and self-limiting features that simplify etching processes during fabrication.
摘要:
A LED lamp includes an optically transmissive enclosure and a base connected to the enclosure. LEDs are mounted on a ribbon for emitting light when energized though an electrical path from the base. The mounting ribbon for the LEDs has a surface that is positioned adjacent an interior surface of the enclosure for transmitting heat from the plurality of LEDs to the enclosure.
摘要:
Described herein are devices and methods incorporating light extraction features for improving light extraction in light emitting diode (LED) chips, for example, thin-film semiconductor LED chips such as thin film GaN chips. These features can be located in the semiconductor diode region of an LED chip and are configured to improve device light extraction by redirecting light emitted by the chip's active region. In some embodiments, the light extraction features can comprise a material with a refractive index lower than the surrounding semiconductor material. In some embodiments, the light extraction features are shaped to improve light extraction and can be formed as protrusions, indentations and can comprise various features such as sloped sidewalls. Also disclosed herein are contact configurations for improving electrical conductivity in the disclosed devices.
摘要:
LED packages are disclosed that are compact and efficiently emit light, and can comprise encapsulants with planar surfaces that refract and/or reflect light within the package encapsulant. The packages can also comprise a submount with one or more LEDs, and a blanket conversion material layer on the one or more LEDs and the submount. The encapsulant can be on the submount, over the LEDs, and light reflected within the encapsulant will reach the conversion material, where it will be absorbed and emitted omnidirectionally. This allows for reflected light to now escape from the encapsulant. This allows for efficient emission and a broader emission profile, for example when compared to conventional packages with hemispheric encapsulants or lenses. In certain embodiments, the LED package provides a higher chip area to LED package area ratio. By using an encapsulant with planar surfaces, the LED package can provide unique dimensional relationships between the various features and the LED package ratios, enabling more flexibility in using the packages in different applications.
摘要:
LED packages are disclosed that are compact and efficiently emit light, and can comprise encapsulants with planar surfaces that refract and/or reflect light within the package encapsulant. The packages can comprise a submount with a plurality of LEDs, which emit different colors of light, and a blanket conversion material layer on the LEDs and the submount. The encapsulant can be on the submount, over the LEDs, and light reflected within the encapsulant will reach the conversion material to be absorbed and emitted omnidirectionally. Reflected light can now escape the encapsulant, allowing for efficient emission and a broader emission profile, when compared to conventional packages with hemispheric encapsulants or lenses. The LED package can have a higher chip area to LED package area ratio. By using an encapsulant with planar surfaces, the LED package provides unique dimensional relationships between the features and LED package ratios, enabling more flexibility with different applications.
摘要:
A method of making a diode begins by depositing an AlxGa1-xN nucleation layer on a SiC substrate, then depositing an n+ GaN buffer layer, an n− GaN layer, an AlxGa1-xN barrier layer, and an SiO2 dielectric layer. A portion of the dielectric layer is removed and a Schottky metal deposited in the void. The dielectric layer is affixed to the support layer with a metal bonding layer using an Au—Sn utectic wafer bonding process, the substrate is removed using reactive ion etching to expose the n+ layer, selected portions of the n+, n−, and barrier layers are removed to form a mesa diode structure on the dielectric layer over the Schottky metal; and an ohmic contact is deposited on the n+ layer.
摘要翻译:制造二极管的方法开始于在SiC衬底上沉积Al x Ga 1-x N成核层,然后沉积n + GaN缓冲层,n-GaN层,Al x Ga 1-x N势垒层和SiO 2电介质层。 去除介电层的一部分并沉积在空隙中的肖特基金属。 使用Au-Sn结晶晶片接合工艺用金属接合层将电介质层固定到支撑层上,使用反应离子蚀刻去除衬底以露出n +层,n +,n-和阻挡层的选定部分 被去除以在肖特基金属上的介电层上形成台面二极管结构; 并且在n +层上沉积欧姆接触。
摘要:
A method includes the steps of obtaining a frame from an image sensor, the frame comprising a number of pixel values, detecting a change in a first subset of the pixel values, detecting a change in the second subset of the pixel values near the first subset of the pixel values, and determining an occupancy state based on a relationship between the change in the first subset of the pixel values and the second subset of the pixel values. The occupancy state may be determined to be occupied when the change in the first subset of the pixel values is in a first direction and the change in the second subset of the pixel values is in a second direction opposite the first direction.
摘要:
A high efficiency LED chip is disclosed that comprises an active LED structure comprising an active layer between two oppositely doped layers. A first reflective layer can be provided adjacent to one of the oppositely doped layers, with the first layer comprising a material with a different index of refraction than the active LED structure. The difference in IR between the active LED structure and the first reflective layer increases TIR of light at the junction. In some embodiments the first reflective layer can comprise an IR lower than the semiconductor material, increasing the amount of light that can experience TIR. Some embodiments of LED chips according to the present invention can also comprise a second reflective layer or metal layer on and used in conjunction with the first reflective layer such that light passing through the first reflective layer can be reflected by the second reflective layer.
摘要:
A method of making a diode begins by depositing an AlxGa1-xN nucleation layer on a SiC substrate, then depositing an n+ GaN buffer layer, an n− GaN layer, an AlxGa1-xN barrier layer, and an SiO2 dielectric layer. A portion of the dielectric layer is removed and a Schottky metal deposited in the void. The dielectric layer is affixed to the support layer with a metal bonding layer using an Au—Sn utectic wafer bonding process, the substrate is removed using reactive ion etching to expose the n+ layer, selected portions of the n+, n−, and barrier layers are removed to form a mesa diode structure on the dielectric layer over the Schottky metal; and an ohmic contact is deposited on the n+ layer.
摘要翻译:制造二极管的方法开始于在SiC衬底上沉积Al x Ga 1-x N成核层,然后沉积n + GaN缓冲层,n-GaN层,Al x Ga 1-x N势垒层和SiO 2电介质层。 去除介电层的一部分并沉积在空隙中的肖特基金属。 使用Au-Sn结晶晶片接合工艺用金属接合层将电介质层固定到支撑层上,使用反应离子蚀刻去除衬底以露出n +层,n +,n-和阻挡层的选定部分 被去除以在肖特基金属上的介电层上形成台面二极管结构; 并且在n +层上沉积欧姆接触。
摘要:
A LED lamp includes an optically transmissive enclosure and a base connected to the enclosure. LEDs are mounted on a ribbon for emitting light when energized though an electrical path from the base. The mounting ribbon for the LEDs has a surface that is positioned adjacent an interior surface of the enclosure for transmitting heat from the plurality of LEDs to the enclosure.