摘要:
Biaxially oriented polyester films including polyester polymer, a carbodiimide hydrolysis stabilizer, and a UV absorber are described. The polyester films have a carboxyl end group concentration of 5-20 equivalents per ton, and a haze value of 2% or less. The films exhibit superior transparency and possess stable light transmission characteristics. Methods of making the films and articles produced from the films are also described.
摘要:
Biaxially oriented polyester films including polyester polymer, a carbodiimide hydrolysis stabilizer, and a UV absorber are described. The polyester films have a carboxyl end group concentration of 5-20 equivalents per ton, and a haze value of 2% or less. The films exhibit superior transparency and possess stable light transmission characteristics. Methods of making the films and articles produced from the films are also described.
摘要:
A multilayer composite film for sublimation type dye transfer imaging includes a polyester base layer and an adhesive layer onto which an ink layer of the sublimation dye can be placed. The adhesive layer includes an acrylic resin, an epoxy resin monomer and a crosslinking agent. The components of the adhesive layer preferably are water soluble or water dispersible.
摘要:
Described are smooth biaxially oriented films and methods of making smooth biaxially oriented films for molding processes. The films may include an outer film layer A, and an outer film layer B that includes particles. Layer A has a SRa roughness of from 1 nm to 5 nm and a SRz roughness of from 10 nm to 100 nm. Layer B has a SRa roughness of from 5 nm to 50 nm and a SRz roughness of from 10 nm to 200 nm. The SRa and SRz of layer B is larger than the SRa and SRz of layer A.
摘要:
Metallized multi-layer biaxially oriented polylactic acid base polymer (BOPLA) films that exhibits improved barrier properties and metal adhesion. The films include a core layer including crystalline polylactic acid base polymer, a first skin layer consisting essentially of amorphous polylactic acid base polymer, and a metal layer on the first skin layer. The films may include a second skin layer consisting essentially of amorphous polylactic acid base polymer.
摘要:
A long life balloon formed from a lamination. The lamination includes a polyester film with a total thickness of 4 μm to 12 μm. The polyester film includes a biaxially oriented polyester core layer and at least one amorphous copolyester skin layer. The lamination also includes a sealant layer and a gas barrier layer on an opposite side of the polyester film from the sealant layer. The oxygen transmission rate of the balloon is less than 0.1 cc/100 sqin/day, a bonding strength of the gas barrier layer to the surface of the polyester film is more than 300 g/in at dry conditions, a sealing strength of the balloon is more than 3.5 kg/in, and a floating time of the balloon is more than 20 days.
摘要:
The present invention is directed to a multilayer film having, as its main component, a hydroxy acid polymer with improved gas barrier and optional heat sealability. The oriented film of predominately hydroxy acid polymer having controlled shrink can be produced by melting and coextruding a hydroxy acid polymer with a much thinner layer of an amorphous aromatic copolyester to form a multilayer film that is quench cooled, then biaxially stretched at a process temperature above the glass transition and below the cold crystallization temperature of the hydroxy acid polymer. A heat-setting treatment with a controlled relaxation of the film above the hydroxy acid polymer glass transition temperature and below its melt temperature may be used to control shrinkage. The films thus obtained are vacuum metallized on the aromatic copolyester surface to produce environmentally friendly packaging from predominately renewable resources having improved gas barrier properties.
摘要:
A long life balloon formed from a lamination. The lamination includes a polyester film with a total thickness of 4 μm to 12 μm. The polyester film includes a biaxially oriented polyester core layer and at least one amorphous copolyester skin layer. The lamination also includes a sealant layer and a gas barrier layer on an opposite side of the polyester film from the sealant layer. The oxygen transmission rate of the balloon is less than 0.1 cc/100 sqin/day, a bonding strength of the gas barrier layer to the surface of the polyester film is more than 300 g/in at dry conditions, a sealing strength of the balloon is more than 3.5 kg/in, and a floating time of the balloon is more than 20 days.
摘要:
Described are biaxially oriented polylactic acid (BOPLA) films with a novel formulation that exhibits a softer feel and quieter sound, without jeopardizing film making stability. The films can be used, for example, in packaging applications. The films can be metallized, or combined with barrier coatings or layers, for improved gas barrier properties particularly for moisture vapor transmission barrier desired in packaging applications. The films can also be printing films for packaging applications and may be transparent or matte in appearance. The films have characteristics that are beneficial to converting processes, are economical, and maintain bio-compostability similar to typical BOPLA films.
摘要:
The present invention is directed to a multilayer film having, as its main component, a hydroxy acid polymer with improved gas barrier and optional heat sealability. The oriented film of predominately hydroxy acid polymer having controlled shrink can be produced by melting and coextruding a hydroxy acid polymer with a much thinner layer of an amorphous aromatic copolyester to form a multilayer film that is quench cooled, then biaxially stretched at a process temperature above the glass transition and below the cold crystallization temperature of the hydroxy acid polymer. A heat-setting treatment with a controlled relaxation of the film above the hydroxy acid polymer glass transition temperature and below its melt temperature may be used to control shrinkage. The films thus obtained are vacuum metallized on the aromatic copolyester surface to produce environmentally friendly packaging from predominately renewable resources having improved gas barrier properties.