摘要:
A sulfur tolerant oxidation catalyst with appreciable NO and HC oxidation capabilities has been developed for use in any component of an exhaust aftertreatment system for a lean-burn engine where the oxidation of at least NO is desired. Several non-exclusive examples of such components where the oxidation catalyst may be employed include a DOC and a LNT. The oxidation catalyst may comprise perovskite oxide particles that support palladium particles. The ability of the palladium supported perovskite oxide particles to concurrently oxidize NO and HC's can significantly diminish or altogether eliminate the use of platinum in the exhaust aftertreatment system for at least NO oxidation. The oxidation catalyst, moreover, may exhibit superior thermal durability and better NO and HC oxidation activities than platinum in some instances.
摘要:
A sulfur tolerant oxidation catalyst with appreciable NO and HC oxidation capabilities has been developed for use in any component of an exhaust aftertreatment system for a lean-burn engine where the oxidation of at least NO is desired. Several non-exclusive examples of such components where the oxidation catalyst may be employed include a DOC and a LNT. The oxidation catalyst may comprise perovskite oxide particles that support palladium particles. The ability of the palladium supported perovskite oxide particles to concurrently oxidize NO and HC's can significantly diminish or altogether eliminate the use of platinum in the exhaust aftertreatment system for at least NO oxidation. The oxidation catalyst, moreover, may exhibit superior thermal durability and better NO and HC oxidation activities than platinum in some instances.
摘要:
A method for removing NOX from an oxygen-rich exhaust flow produced by a combustion source that is combusting a lean mixture of air and fuel may include passing the oxygen-rich exhaust flow through an exhaust aftertreatment system that includes a NOX oxidation catalyst that includes perovskite oxide particles, a NOX storage catalyst, and a NOX reduction catalyst.
摘要:
An exhaust aftertreatment system for a lean-burn engine may include a lean NOX trap that comprises a catalyst material. The catalyst material may remove NOX gases from the engine-out exhaust emitted from the lean-burn engine. The catalyst material may include a NOX oxidation catalyst that comprises a perovskite compound.
摘要:
Following a cold start of a hydrocarbon-fueled engine operated in a lean-burn-combustion mode, several seconds and minutes may be required for the exhaust gas stream to heat exhaust treatment devices in the exhaust system and conduit to their effective operating temperatures. The warm-up period may be particularly long for a NOx reduction catalyst (SCR) located downstream in the exhaust flow system. Accordingly, a bed of absorbent material, such as a suitably sized bed of alumina particles, located upstream of the SCR, is used to temporarily absorb water and NOx from a relatively cold exhaust until the exhaust has suitably heated the SCR to its operating temperature. Then, the warmed exhaust will remove the water and NOx from their temporary storage material and carry them to the reduction catalyst.
摘要:
A method for monitoring performance of a passive selective catalytic reduction system includes operating the internal combustion engine in a preconditioning mode. Subsequent to the preconditioning, an air/fuel excursion is introduced into the exhaust gas feedstream and a signal output from a sensor monitoring the exhaust gas feedstream in the selective catalytic reduction system during the air/fuel excursion is monitored. An operating effectiveness is determined for the selective catalytic reduction system correlated to the signal output from the sensor monitoring the exhaust gas feedstream.
摘要:
One embodiment of the invention may include a product comprising a catalyst combination comprising a perovskite catalyst and a second catalyst that is not a perovskite catalyst.
摘要:
A low-oxygen content exhaust flow produced by an engine that is combusting, on average, a stoichiometric mixture of air and fuel generally contains various unwanted gaseous emissions. The exhaust flow is treated by an exhaust aftertreatment system that includes a three-way-catalyst (TWC) and an ammonia-selective catalytic reduction (ammonia-SCR) catalyst positioned downstream from the TWC in a flow direction of the exhaust flow. The ammonia-SCR catalyst includes (1) a base metal ion-substituted zeolite and/or a base metal ion-substituted silicoaluminophosphate and (2) an oxygen storage material selected from the group consisting of a metal oxide or a mixed metal oxide that exhibits oxygen storage and release capacity. The serial arrangement of the TWC and the ammonia-SCR catalyst enhances the conversion of NOX to N2 in the low oxygen-content exhaust flow produced by the engine and helps prevent ammonia slip to the atmosphere.
摘要:
An exhaust aftertreatment system that receives an exhaust flow from a lean-burn engine and a method for treating the exhaust flow are described. The exhaust aftertreatment system may include a three-way-catalyst, an oxidation catalyst, and a NH3—SCR catalyst. The three-way-catalyst passively generates NH3 from native NOX contained in the exhaust flow when an A/F mixture supplied to the engine is cycled from lean to rich. The generated NH3 is then stored in the NH3—SCR catalyst to facilitate NOX reduction when the A/F mixture supplied to the engine is cycled back to lean. The oxidation catalyst is located upstream of the NH3—SCR catalyst and operates to lower the NO to NO2 molar ratio of the NOX fed to the NH3—SCR catalyst. The oxidation catalyst comprises perovskite oxide particles.
摘要:
An after-treatment system architecture and method for oxidizing the nitric oxide component of a gas stream are disclosed. One embodiment may include treatment of a gas stream that includes NOx with a perovskite catalyst of the general formula ABO3 or a modified formula of ABO3 wherein a small amount of a promoter material is substituted for a portion of at least one of element A or element B in a catalytic oxidation reaction to oxidize nitric oxide in the gas stream.