摘要:
The present invention relates to novel compounds of Formula (I), wherein M, A and Y are defined as in Formula (I); invention compounds are modulators of metabotropic glutamate receptors—subtype 4 (“mGluR4”) which are useful for the treatment or prevention of central nervous system disorders as well as other disorders modulated by mGluR4 receptors. The invention is also directed to pharmaceutical compositions and the use of such compounds in the manufacture of medicaments, as well as to the use of such compounds for the prevention and treatment of such diseases in which mGluR4 is involved.
摘要:
The present invention relates to compounds of formula (I) that are useful as hepatitis C virus (HCV) NS5B polymerase inhibitors, the synthesis of such compounds, and the use of such compounds for inhibiting HCV NS5B polymerase activity, for treating or preventing HCV infections and for inhibiting HCV viral replication and/or viral production in a cell-based system.
摘要:
The present invention relates to compounds of formula (I) that are useful as hepatitis C virus (HCV) NS5B polymerase inhibitors, the synthesis of such compounds, and the use of such compounds for inhibiting HCV NS5B polymerase activity, for treating or preventing HCV infections and for inhibiting HCV viral replication and/or viral production in a cell-based system.
摘要:
The present invention relates to compounds of formula (I) that are useful as hepatitis C virus (HCV) NS5B polymerase inhibitors, the synthesis of such compounds, and the use of such compounds for inhibiting HCV NS5B polymerase activity, for treating or preventing HCV infections and for inhibiting HCV viral replication and/or viral production in a cell-based system.
摘要:
The present invention relates to compounds of formula (I) that are useful as hepatitis C virus (HCV) NS5B polymerase inhibitors, the synthesis of such compounds, and the use of such compounds for inhibiting HCV NS5B polymerase activity, for treating or preventing HCV infections and for inhibiting HCV viral replication and/or viral production in a cell-based system.
摘要:
The present invention relates to compounds of formula (I) that are useful as hepatitis C virus (HCV) NS5B polymerase inhibitors, the synthesis of such compounds, and the use of such compounds for inhibiting HCV NS5B polymerase activity, for treating or preventing HCV infections and for inhibiting HCV viral replication and/or viral production in a cell-based system.
摘要:
Disclosed are compounds of formula (I) that are used as hepatitis C virus (HCV) NS5B polymerase inhibitors, the synthesis of such compounds, and the use of such compounds for inhibiting HCV NS5B polymerase activity, for treating or preventing HCV infections and for inhibiting HCV viral replication and/or viral production in a cell-based system.
摘要:
The present invention relates to Imidazole Derivatives of Formula (I), and pharmaceutically acceptable salts thereof, wherein A, B, Y, R1 and R2 are as defined herein. The present invention also relates to compositions comprising at least one Imidazole Derivative, and methods of using the Imidazole Derivatives for inhibiting CYP450 3A. Inhibition of CYP450 3A can be used to improve the pharmacokinetics of a drug that is metabolized by CYP450 3A4.
摘要:
The present invention relates to piperidine or piperazine linked imidazole and triazole derivatives, compositions comprising said compounds, alone or in combination with other drugs, and methods of using the compounds for improving the pharmacokinetics of a drug. The compounds of the invention are useful in human and veterinary medicine for inhibiting CYP3A4 and for improving the pharmacokinetics of a therapeutic compound that is metabolized by CYP3A4.
摘要:
The present invention relates to piperidine or piperazine linked imidazole and triazole derivatives, compositions comprising said compounds, alone or in combination with other drugs, and methods of using the compounds for improving the pharmacokinetics of a drug. The compounds of the invention are useful in human and veterinary medicine for inhibiting CYP3A4 and for improving the pharmacokinetics of a therapeutic compound that is metabolized by CYP3A4.