摘要:
A structure and method for a metal replacement gate of a high performance device is provided. A sacrificial gate structure is first formed on an etch stop layer provided on a semiconductor substrate. A pair of spacers is provided on sidewalls of the sacrificial gate structure. The sacrificial gate structure is then removed, forming an opening. Subsequently, a metal gate including an first layer of metal such as tungsten, a diffusion barrier such as titanium nitride, and a second layer of metal such as tungsten is formed in the opening between the spacers.
摘要:
A semiconductor structure is provided that includes a Vt stabilization layer between a gate dielectric and a gate electrode. The Vt stabilization layer is capable of stabilizing the structure's threshold voltage and flatband voltage to a targeted value and comprises a nitrided metal oxide, or a nitrogen-free metal oxide, with the proviso that when the Vt stabilization layer comprises a nitrogen-free metal oxide, at least one of the semiconductor substrate or the gate dielectric includes nitrogen. The present invention also provides a method of fabricating such a structure.
摘要:
Compounds of Ta and N, potentially including further elements, and with a resistivity below about 20 mΩcm and with the elemental ratio of N to Ta greater than about 0.9 are disclosed for use as gate materials in field effect devices. A representative embodiment of such compounds, TaSiN, is stable at typical CMOS processing temperatures on SiO2 containing dielectric layers and high-k dielectric layers, with a workfunction close to that of n-type Si. Metallic Ta—N compounds are deposited by a chemical vapor deposition method using an alkylimidotris(dialkylamido)Ta species, such as tertiaryamylimidotris(dimethylamido)Ta (TAIMATA), as Ta precursor. The deposition is conformal allowing for flexible introduction of the Ta—N metallic compounds into a CMOS processing flow. Devices processed with TaN or TaSiN show near ideal characteristics.
摘要:
A method of fabricating hafnium oxide and/or zirconium oxide films is provided. The methods include providing a mixture of Hf and/or Zr alkoxide dissolved, emulsified or suspended in a liquid; vaporizing at least the alkoxide and depositing the vaporized component at a temperature of greater than 400° C. The resultant film is dense, microcrystalline and is capable of self-passivation when treated in a hydrogen plasma or forming gas anneal.
摘要:
Compounds of Ta and N, potentially including further elements, and with a resistivity below about 20 mΩcm and with the elemental ratio of N to Ta greater than about 0.9 are disclosed for use as gate materials in field effect devices. A representative embodiment of such compounds, TaSiN, is stable at typical CMOS processing temperatures on SiO2 containing dielectric layers and high-k dielectric layers, with a workfunction close to that of n-type Si. Metallic Ta—N compounds are deposited by a chemical vapor deposition method using an alkylimidotris(dialkylamido)Ta species, such as tertiaryamylimidotris(dimethylamido)Ta (TAIMATA), as Ta precursor. The deposition is conformal allowing for flexible introduction of the Ta—N metallic compounds into a CMOS processing flow. Devices processed with TaN or TaSiN show near ideal characteristics.
摘要:
The present invention provides a gate stack structure that has high mobilites and low interfacial charges as well as semiconductor devices, i.e., metal oxide semiconductor field effect transistors (MOSFETs) that include the same. In the semiconductor devices, the gate stack structure of the present invention is located between the substrate and an overlaying gate conductor. The present invention also provides a method of fabricating the inventive gate stack structure in which a high temperature annealing process (on the order of about 800° C.) is employed. The high temperature anneal used in the present invention provides a gate stack structure that has an interface state density, as measured by charge pumping, of about 8×1010 charges/cm2 or less, a peak mobility of about 250 cm2/V-s or greater and substantially no mobility degradation at about 6.0×1012 inversion charges/cm2 or greater.
摘要翻译:本发明提供具有高移动性和低界面电荷的栅堆叠结构,以及包括其的半导体器件,即金属氧化物半导体场效应晶体管(MOSFET)。 在半导体器件中,本发明的栅极堆叠结构位于衬底和覆盖栅极导体之间。 本发明还提供一种制造本发明的栅叠层结构的方法,其中采用了高温退火工艺(约800℃)。 在本发明中使用的高温退火提供了一种栅堆叠结构,其具有通过电荷泵浦测量的约8×10 10电荷/ cm 2的界面态密度或 更少,约250cm 2 / Vs或更高的峰迁移率,并且在约6.0×10 12反转电荷/ cm 2处基本上不会迁移率降低, 或更大。
摘要:
The present invention provides a gate stack structure that has high mobilites and low interfacial charges as well as semiconductor devices, i.e., metal oxide semiconductor field effect transistors (MOSFETs) that include the same. In the semiconductor devices, the gate stack structure of the present invention is located between the substrate and an overlaying gate conductor. The present invention also provides a method of fabricating the inventive gate stack structure in which a high temperature annealing process (on the order of about 800° C.) is employed. The high temperature anneal used in the present invention provides a gate stack structure that has an interface state density, as measured by charge pumping, of about 8×1010 charges/cm2 or less, a peak mobility of about 250 cm2/V-s or greater and substantially no mobility degradation at about 6.0×1012 inversion charges/cm2 or greater.
摘要翻译:本发明提供具有高移动性和低界面电荷的栅堆叠结构,以及包括其的半导体器件,即金属氧化物半导体场效应晶体管(MOSFET)。 在半导体器件中,本发明的栅极堆叠结构位于衬底和覆盖栅极导体之间。 本发明还提供一种制造本发明的栅叠层结构的方法,其中采用了高温退火工艺(大约800℃)。 在本发明中使用的高温退火提供了一种栅堆叠结构,其具有通过电荷泵浦测量的约8×10 10电荷/ cm 2的界面态密度或 更少,约250cm 2 / Vs或更高的峰迁移率,并且在约6.0×10 12反转电荷/ cm 2处基本上没有迁移率降解, 或更大。
摘要:
A semiconductor structure, particularly a pFET, which includes a dielectric material that has a dielectric constant of greater than that of SiO2 and a Ge or Si content of greater than 50% and at least one other means for threshold/flatband voltage tuning by material stack engineering is provided. The other means contemplated in the present invention include, for example, utilizing an insulating interlayer atop the dielectric for charge fixing and/or by forming an engineered channel region. The present invention also relates to a method of fabricating such a CMOS structure.
摘要:
A diffusion barrier (and method for forming the diffusion barrier) for a field-effect transistor having a channel region and a gate electrode, includes an insulating material being disposed over the channel region. The insulating material includes nitrogen (N), and is disposed under the gate electrode. The insulating material can be provided either as a layer or distributed within a gate dielectric material disposed under the gate electrode.
摘要:
A combination of a drinking container and a liquid dispenser comprises a drinking container defining an interior containment space for a beverage for human consumption and a liquid dispenser, which comprises a body defining an interior containment space and a structure by which the body of the liquid dispenser is mounted onto the drinking container such that the liquid dispenser does not obstruct drinking from a rim of the drinking container.