摘要:
A method which is intended to facilitate and/or simplify the process of fabricating interlayer vias by selective modification of the FEOL film stack on a transfer wafer is provided. Specifically, the present invention provides a method in which two dimensional devices are prepared for subsequent integration in a third dimension at the transition between normal FEOL processes by using an existing interlayer contact mask to define regions in which layers of undesirable dielectrics and metal are selectively removed and refilled with a middle-of-the-line (MOL) compatible dielectric film. As presented, the inventive method is compatible with standard FEOL/MOL integration schemes, and it guarantees a homogeneous dielectric film stack specifically in areas where interlayer contacts are to be formed, thus allowing the option of a straightforward integration path, if desired.
摘要:
Methods of wiring to a transistor and a related transistor are disclosed. In one embodiment, the method includes a method of forming wiring to a transistor, the method comprising: forming a transistor on a semiconductor-on-insulator (SOI) substrate using masks that are mirror images of an intended layout, the forming including forming a gate and a source/drain region for each and a channel, the SOI substrate including a semiconductor-on-insulator (SOI) layer, a buried insulator layer and a silicon substrate; forming a dielectric layer over the transistor; bonding the dielectric layer to another substrate; removing the silicon substrate from the SOI substrate to the buried insulator layer; forming a contact to each of the source/drain region and the gate from a channel side of the gate; and forming at least one wiring to the contacts on the channel side of the gate.
摘要:
A cost-effective and simple method of fabricating strained semiconductor-on-insulator (SSOI) structures which avoids epitaxial growth and subsequent wafer bonding processing steps is provided. In accordance with the present invention, a strain-memorization technique is used to create strained semiconductor regions on a SOI substrate. The transistors formed on the strained semiconductor regions have higher carrier mobility because the Si regions have been strained. The inventive method includes (i) ion implantation to create a thin amorphization layer, (ii) deposition of a high stress film on the amorphization layer, (iii) a thermal anneal to recrystallize the amorphization layer, and (iv) removal of the stress film. Because the SOI substrate was under stress during the recrystallization process, the final semiconductor layer will be under stress as well. The amount of stress and the polaity (tensile or compressive) of the stress can be controlled by the type and thickness of the stress films.
摘要:
A method, system and program product for bonding two circuitry-including semiconductor substrates, and a related stage, are disclosed. In one embodiment, a method of bonding two circuitry-including substrates includes: providing a first stage for holding a first circuitry-including substrate and a second stage for holding a second circuitry-including substrate; identifying an alignment mark on each substrate; determining a location and a topography of each alignment mark using laser diffraction; creating an alignment model for each substrate based on the location and topography the alignment mark thereon; and bonding the first and second circuitry-including substrates together while aligning the first and second substrate based on the alignment model.
摘要:
A method of forming a high aspect ratio via opening through multiple dielectric layers, a high aspect ratio electrically conductive via, methods of forming three-dimension integrated circuits, and three-dimensional integrated circuits. The methods include forming a stack of at least four dielectric layers and etching the first and third dielectric layers with processes selective to the second and fourth dielectric layers, etching the second and third dielectric layers with processes selective to the first and second dielectric layers. Advantageously the process used to etch the third dielectric layer is not substantially selective to the first dielectric layer.
摘要:
Disclosed is a method for depositing a metal layer on an interconnect structure for a semiconductor wafer. In the method, a metal conductor is covered by a capping layer and a dielectric layer. The dielectric layer is patterned so as to expose the capping layer. The capping layer is then sputter etched to remove the capping layer and expose the metal conductor. In the process of sputter etching, the capping layer is redeposited onto the sidewall of the pattern. Lastly, at least one layer is deposited into the pattern and covers the redeposited capping layer.
摘要:
A hardmask layer in the back end of an integrated circuit is formed from TaN having a composition of less than 50% Ta and a resistivity greater than 400 μOhm-cm, so that it is substantially transparent in the visible and permits visual alignment of upper and lower alignment marks through the hardmask and intervening layer(s) of ILD. A preferred method of formation of the hardmask is by sputter deposition of Ta in an ambient containing N2 and a flow rate such that (N2 flow)/(N2+carrier flow)>0.5.
摘要翻译:集成电路后端的硬掩模层由具有小于50%Ta且电阻率大于400μΩ-cm的组成的TaN形成,使得其在可见光中基本上是透明的并且允许上和 通过硬掩模和ILD的中间层降低对准标记。 形成硬掩模的优选方法是通过在含有N 2 O 2的环境中溅射沉积Ta并使流速使得(N 2 N 2 O 2)/(N 2 +载体流)> 0.5。
摘要:
A method for creating an extremely thin semiconductor-on-insulator (ETSOI) layer having a uniform thickness includes: measuring a thickness of a semiconductor-on-insulator (SOI) layer at a plurality of locations; determining a removal thickness at each of the plurality of locations; and implanting ions at the plurality of locations. The implanting is dynamically based on the removal thickness at each of the plurality of locations. The method further includes oxidizing the SOI layer to form an oxide layer, and removing the oxide layer.
摘要:
A method of edge protecting bonded semiconductor wafers. A second semiconductor wafer and a first semiconductor wafer are attached by a bonding layer/interface and the second semiconductor wafer undergoes a thinning process. As a part of the thinning process, a first protective layer is applied to the edges of the second and first semiconductor wafers. A third semiconductor wafer is attached to the second semiconductor wafer by a bonding layer/interface and the third semiconductor wafer undergoes a thinning process. As a part of the thinning process, a second protective layer is applied to the edges of the third semiconductor wafer and over the first protective layer. The first, second and third semiconductor wafers form a wafer stack. The wafer stack is diced into a plurality of 3D chips while maintaining the first and second protective layers.
摘要:
An fabrication of three-dimensional integrated devices and three-dimensional integrated devices fabricated therefrom are described. A device side of a donor wafer is coated with a polymer film and exposure of a substrate side to an oxidizing plasma creates a continuous SiO2 film. Portions of the substrate side are selectively coated with a polymer film and etching of uncoated areas removes at least a substantial portion of the crystalline substrate. A plasma etch tool etches a crystalline substrate to within a pre-determined thickness. The silicon portions of the substrate side are etched by exposure to TMAH. After etching, the donor semiconductor wafer is supported by portions of the substrate that were not etched. The supporting structure allows flexing of the donor semiconductor wafer within the etched areas to enable conformality and reliable bonding to the device surfaces of an acceptor wafer to form a three dimensional integrated device.