摘要:
A laser structure includes at least one active layer having doped Ge so as to produce light emissions at approximately 1550 nm from the direct band gap of Ge. A first confinement structure is positioned on a top region of the at least one active layer. A second confinement structure is positioned on a bottom region the at least one active layer.
摘要:
A method of forming a low loss crystal quality waveguide is provided. The method includes providing a substrate and forming a dielectric layer on the substrate. A channel is formed by etching a portion of the dielectric layer. A selective growth of a Si Ge, or SiGe layer is performed in the area that defines the channel. Furthermore, the method includes thermally annealing the waveguide at a defined temperature range.
摘要:
An optoelectronic device includes an input waveguide structure that receives an input optical signal. A GeSi/Si waveguide structure receives from the input waveguide the input optical signal and performs selective optoelectronic operations on the input optical signal. The GeSi/Si waveguide structure outputs an optical or electrical output signal associated with the selective optoelectronic operations performed on the input optical signal. An output waveguide structure receives the output optical signal from the GeSi/Si waveguide structure and provides the optical output signal for further processing.
摘要:
In a method of forming a photonic device, a first silicon electrode is formed, and then a germanium active layer is formed on the first silicon electrode while including n-type dopant atoms in the germanium layer, during formation of the layer, to produce a background electrical dopant concentration that is greater than an intrinsic dopant concentration of germanium. A second silicon electrode is then formed on a surface of the germanium active layer. The formed germanium active layer is doped with additional dopant for supporting an electrically-pumped guided mode as a laser gain medium with an electrically-activated n-type electrical dopant concentration that is greater than the background dopant concentration to overcome electrical losses of the photonic device.
摘要:
A SiGe or Ge structure comprises a substrate and a SiGe or Ge layer that is formed on a first surface of the substrate. A silicidation or germanide layer is formed on a second surface of the substrate so to increase the tensile strain of the SiGe or Ge layer on the first surface.
摘要:
High-speed optoelectronic devices having a waveguide densely integrated with and efficiently coupled to a photodetector are fabricated utilizing methods generally compatible with CMOS processing techniques. In various implementations, the waveguide consists essentially of single-crystal silicon and the photodetector contains, or consists essentially of, epitaxially grown germanium or a silicon-germanium alloy having a germanium concentration exceeding about 90%.
摘要:
High-speed optoetectronic devices having a waveguide densely integrated with and efficiently coupled to a photodetector are fabricated utilizing methods generally compatible with CMOS processing techniques. In various implementations, the waveguide consists essentially of single-crystal silicon and the photodetector contains, or consists essentially of, epitaxially grown germanium or a silicon-germanium alloy having a germanium concentration exceeding about 90%.
摘要:
High-speed optoelectronic devices having a waveguide densely integrated with and efficiently coupled to a photodetector are fabricated utilizing methods generally compatible with CMOS processing techniques. In various implementations, the waveguide consists essentially of single-crystal silicon and the photodetector contains, or consists essentially of, epitaxially grown germanium or a silicon-germanium alloy having a germanium concentration exceeding about 90%.
摘要:
In a method of forming a photonic device, a first silicon electrode is formed, and then a germanium active layer is formed on the first silicon electrode while including n-type dopant atoms in the germanium layer, during formation of the layer, to produce a background electrical dopant concentration that is greater than an intrinsic dopant concentration of germanium. A second silicon electrode is then formed on a surface of the germanium active layer. The formed germanium active layer is doped with additional dopant for supporting an electrically-pumped guided mode as a laser gain medium with an electrically-activated n-type electrical dopant concentration that is greater than the background dopant concentration to overcome electrical losses of the photonic device.
摘要:
A laser structure includes at least one active layer having doped Ge so as to produce light emissions at approximately 1550 nm from the direct band gap of Ge. A first confinement structure is positioned on a top region of the at least one active layer. A second confinement structure is positioned on a bottom region the at least one active layer.