Abstract:
An accuracy of detecting a slip out of a substrate from a top ring is improved. A polishing unit 300 includes a polishing table 350, a top ring 302, a light emitting member 371, a slip-out detector 370, and an elimination mechanism 380. A polishing pad 352 that polishes a substrate WF is attached to the polishing table 350. The top ring 302 holds the substrate WF to press the substrate WF against the polishing pad 352. The light emitting member 371 emits a light to a detection area 372 on the polishing pad 352. The slip-out detector 370 detects a slip out of the substrate WF from the top ring 302 based on the light reflected from the detection area 372. The elimination mechanism 380 eliminates a polishing liquid flowing into the detection area 372.
Abstract:
A substrate attaching/detaching unit includes a stocker accommodating a plurality of substrate holders 80 and adapted so that the substrate holders 80 are aligned in a vertical direction with one another in a horizontal posture, a first substrate holder conveying mechanism that takes the substrate holders 80 into and out of the stocker, an elevating mechanism that raises and lowers the first substrate holder conveying mechanism in the vertical direction, a second substrate holder conveying mechanism that transfers the substrate holder to and from the first substrate holder conveying mechanism, and a substrate attaching/detaching mechanism that attaches and detaches the substrate to and from the substrate holder held in the second substrate holder conveying mechanism.
Abstract:
A substrate attaching/detaching unit includes a stocker accommodating a plurality of substrate holders 80 and adapted so that the substrate holders 80 are aligned in a vertical direction with one another in a horizontal posture, a first substrate holder conveying mechanism that takes the substrate holders 80 into and out of the stocker, an elevating mechanism that raises and lowers the first substrate holder conveying mechanism in the vertical direction, a second substrate holder conveying mechanism that transfers the substrate holder to and from the first substrate holder conveying mechanism, and a substrate attaching/detaching mechanism that attaches and detaches the substrate to and from the substrate holder held in the second substrate holder conveying mechanism.
Abstract:
A substrate processing apparatus capable of inhibiting diffusion of a chemical solution atmosphere around a processing bath. The substrate processing apparatus has a processing bath for storing a substrate holder holding a substrate and for processing the substrate, a lifter configured to support the substrate holder, store the substrate holder in the processing bath, and take out the substrate holder from the processing bath, and a cover configured to cover the periphery of the substrate holder taken out from the processing bath by the lifter.
Abstract:
An apparatus for processing a substrate is disclosed. The apparatus includes a polishing section configured to polish a substrate, a transfer mechanism configured to transfer the substrate, and a cleaning section configured to clean and dry the polished substrate. The cleaning section has plural cleaning lines for cleaning plural substrates. The plural cleaning lines have plural cleaning modules and plural transfer robots for transferring the substrates.
Abstract:
A polishing apparatus which can efficiently polish an entirety of a back surface of a substrate, with the back surface facing downward, is disclosed. The polishing apparatus includes: a substrate holder configured to rotate the substrate; a polishing head configured to polish the back surface of the substrate; a tape advancing device; and a translational rotating mechanism configured to cause the polishing head to make a translational rotating motion. The substrate holder includes a plurality of rollers which are rotatable about their own axes. The plurality of rollers have substrate-holding surfaces capable of contacting a periphery of the substrate. The polishing head is disposed below the substrate-holding surfaces. The polishing head includes a polishing blade configured to press the polishing tape against the back surface of the substrate, and a pressing mechanism configured to push the polishing blade upward.
Abstract:
To achieve a cleaning module and a substrate processing apparatus that can improve the cleaning capability for a substrate with a simple structure. A cleaning module includes a first transfer mechanism 210-1, an ultrasonic cleaning tank 440, a transfer machine 420, and a second transfer mechanism 210-2. The first transfer mechanism 210-1 is for transferring a substrate WF with a surface to be polished facing downward up to a substrate grip or release position 418 on a downstream side along a transfer passage 405. The ultrasonic cleaning tank 440 is disposed at a position spaced apart from the transfer passage 405 and is for cleaning a substrate WF with the surface to be polished facing downward. The transfer machine 420 is for transferring the substrate WF between the substrate grip or release position 418 of the transfer passage 405 and the ultrasonic cleaning tank 440. The second transfer mechanism 210-2 is for transferring the substrate WF transferred to the substrate grip or release position 418 from the ultrasonic cleaning tank 440 by the transfer machine 420 to further downstream along the transfer passage 405.
Abstract:
An object of the invention is to provide a calibration apparatus which enables the pressing force of the polishing pad to be adjusted by a simple method without the need of removing a stage on which a substrate can be placed.One embodiment of the invention provides a calibration apparatus for a bevel polishing system for polishing a bevel portion of a substrate, comprising: a load measuring device capable of measuring a pressing load from a polishing pad of the bevel polishing system; and a base plate capable of having the load measuring device placed thereon, wherein the base plate is capable of being fixed on a vacuum suction table which is capable of having a substrate placed thereon.
Abstract:
An apparatus for processing a substrate is disclosed. The apparatus includes a polishing section configured to polish a substrate, a transfer mechanism configured to transfer the substrate, and a cleaning section configured to clean and dry the polished substrate. The cleaning section has plural cleaning lines for cleaning plural substrates. The plural cleaning lines have plural cleaning modules and plural transfer robots for transferring the substrates.
Abstract:
A polishing apparatus is used for polishing a surface of a substrate such as a semiconductor wafer to planarize the surface of the substrate. The polishing apparatus includes a polishing table having a polishing surface, and a top ring configured to hold a substrate with an outer circumferential edge of the substrate surrounded by a retainer ring and to press the substrate against the polishing surface. The top ring is movable between a polishing position above the polishing table, a position laterally of the polishing table, and a cleaning position. The polishing apparatus includes a cleaning unit disposed in the cleaning position and configured to eject a cleaning liquid toward the lower surface of the top ring, which is being rotated, thereby cleaning the substrate held by the top ring together with the lower surface of the top ring.