Abstract:
Provided is a miniaturized photo-acoustic probe for a clinical image capable of effectively measuring a photo-acoustic signal by making an ultrasonic axis and an optical axis parallel. The photo-acoustic probe for a clinical image includes a laser generator configured to generate a laser beam, an ultrasound transducer disposed to be parallel to the laser generator and configured to analyze ultrasound output from an object, first and second reflectors configured to receive ultrasound generated in an axis identical to that of the laser beam generated by the laser generator, and a medium material configured to allow the laser to be transmitted from the first reflector to the object and increase ultrasound reflectivity of the first and the second reflector.
Abstract:
Provided is an apparatus for detecting biomaterial and method of detecting biomaterial. The method include providing a sample including a fluorescent material and a biomaterial on one surface of an ultrasound receiving unit, and measuring an ultrasonic wave generated by the fluorescent material by emitting light to the sample.
Abstract:
Disclosed is an optical constant measuring method which includes applying light to a sample including a target material; measuring a first optical signal from light reflected from the sample; grasping a structure of the sample based on the first optical signal; measuring a second optical signal from light penetrating the sample; grasping an overall optical property of the sample based on the second optical signal; and measuring an optical constant of the target material based on the measured structure and optical property of the sample.
Abstract:
Provided is an optical imaging system capable of increasing diagnosis reliability and preciseness, and efficiently observing a target. The optical imaging system using multiple light sources according to an embodiment of the present invention includes a first light source generating a first light modulated with a first frequency, a second light source generating a second light modulated with a second frequency, a camera simultaneously detecting multiple lights output from an object after the first and second lights are illuminated on the object and outputting multiple image detecting signals, and an image processing unit processing the multiple image detecting signals to obtain a first image representing a shape of the object and a second image representing a desired target portion of the object.
Abstract:
The inventive concept relates to a measuring device. The measuring device irradiates a first beam including a polarization component and a second beam which is a wavelength swept laser having a coherence length previously set and can measure a glucose concentration of an aqueous humor by measuring an optical path length and the rotation amount of a polarization plane respectively from a first output beam and a second output beam being output from an eye.
Abstract:
Provided are a wavelength swept vertical-cavity surface-emitting laser and a method of fabricating the same. The laser may include a substrate, a lower reflection layer on the substrate, an active layer on the lower reflection layer, a sacrificial layer disposed on a first side of the active layer, a stopper disposed on a second side of the active layer that may be spaced apart from the sacrificial layer, and an upper reflection layer fixed on the sacrificial layer, the upper reflection layer extending over the stopper and the active layer. The stopper defines a minimum separation distance between the upper reflection layer and the active layer.
Abstract:
Provided are a plastic microfluid control device having a multi-step microchannel and a method of manufacturing the same. The device includes a lower substrate, and a fluid channel substrate contacting the lower substrate and having a multi-step microchannel having at least two depths in a side coupling to the lower substrate. Thus, the device can precisely control the fluid flow by controlling capillary force in a depth direction of the channel by controlling the fluid using the multi-step microchannel having various channel depths. A multi-step micropattern is formed by repeating photolithography and transferred, thereby easily forming the multi-step microchannel having an even surface and a precisely controlled height.
Abstract:
Provided is a light output apparatus for increasing an output of an optical source. The light output apparatus includes a pulse generator generating a plurality of optical pulses, a pulse distributor dispersing the optical pulses generated from the pulse generator in time domain, an optical coupler allowing the dispersed optical pulses to travel along one path. The light output apparatus also includes an optical amplifier amplifying output intensities of optical pulses output from the optical coupler, a pulse separator separating the optical pulses amplified by the optical amplifier for each corresponding wavelength, a time delaying unit individually delaying each of the optical pulses separated for each wavelength to be reached a combination point at an identical time, and a pulse combiner combining the optical pulses arrived at the combination point at the identical time.