摘要:
The present invention intends to improve the accuracy of temperature measurement when measuring the temperature of a semiconductor wafer by a radiation thermometer on the basis of the idea of virtual blackbody simulated by multiple reflection of light. A system includes a wafer (W), a circular reflector 1 of a radius R disposed opposite to the wafer (W), and a probe (2) disposed in a through hole formed in the reflector (1). The probe (2) is a through hole. The radiation intensity of radiation passed the through hole is determined by image data provided by a CCD camera disposed behind the back surface of the reflector (1). An error in measured radiation intensity of radiation falling the probe (2) due to light that enters a space between the wafer (W) and the reflector (1) and a space between the reflector (1) and the probe (2) and light leaks from the same spaces is corrected, the emissivity of the wafer (W) is calculated and the temperature of the wafer (W) is determined.
摘要:
A virtual blackbody radiation system (10) includes a light-emitting unit (1) including an LED driven by a fixed current, a light-receiving unit (2) including a sapphire rod, and an optical unit (3) including lenses (31, 32) for converging light emitted by the light-emitting unit in a convergent light. A cylindrical member (41)included in the optical unit (3)can be moved along the optical axis by a servomotor (42) included in a focus adjusting unit (4) for positional adjustment. The focus of convergent light relative to the light-receiving unit (2) can be adjusted by moving the lens (32) disposed in the cylindrical member (41) along the optical axis relative to the light-receiving unit (2). The intensity of the convergent light on the light-receiving unit (2) can be adjusted to the intensity of predetermined blackbody radiation. Thus, the virtual blackbody radiation system (10) is able to obtain light of a desired intensity without changing the driving current for driving a light source; consequently, the life time of the light source can be extended and the stability of radiation can be improved.
摘要:
The present invention relates to a multivalent antibody comprising multiple heavy chain variable regions of antibody linked to each other via a linker comprising an amino acid sequence encoding an immunoglobulin domain or a fragment thereof.
摘要:
A simple manufacturing method for an organic electroluminescent panel in which organic electroluminescent elements are arranged and sealed by a sealing adhesive. The electroluminescent panel has excellent sealing properties and excellent durability as a result of the organic electroluminescent elements being adhered to one another by a heat-curable adhesive. The manufacturing method is for an organic electroluminescent panel in which at least a first electrode, an organic functional layer containing a light-emitting layer, an organic electroluminescent element having a second electrode, and a sealing substrate are bonded together on a substrate by the heat-curable adhesive. The method includes forming a heat-curable adhesive layer on the sealing substrate, subjecting the heat-curable adhesive layer formed on the sealing substrate to pre-heating treatment, bonding the pre-heated heat-curable adhesive layer to the organic electroluminescent element, and subjecting the heat-curable adhesive layer to heat curing, in the given order.
摘要:
A highly stable mutant of human IgG4 antibody is provided. Such antibody is an antibody in which the CH3 domain of human IgG4 is substituted with the CH3 domain of human IgG1 and which exhibits inhibited aggregate formation, an antibody in which the CH3 and CH2 domains of human IgG4 are substituted with the CH3 and CH2 domains of human IgG1, respectively, or an antibody in which arginine at position 409 indicated in the EU index proposed by Kabat et al. of human IgG4 is substituted with lysine and which exhibits inhibited aggregate formation.
摘要:
Disclosed are a coating method of forming a coating with a stable thickness from a coating solution with a low viscosity employing a slit-type die coater and an organic electroluminescence element prepared employing the coating method. The coating method employing a slit-type die coater comprises the steps of allowing a lip tip of the slit-type die coater to bring close to the substrate to form a coating solution bead between the lip tip and the substrate, and coating on the substrate a coating solution ejected from a slit outlet at the lip tip while relatively moving the slit-type die coater and the substrate, thereby forming at least two coating layers in the stripe shape, featured in that the lip tip has at least one groove in the coating region in the coating width direction, and a pressure at the slit outlet of the coating solution of the bead is negative or zero.
摘要:
A speaker edge includes a resin layer including a resin member and a fiber layer including a tangled fiber body. A melting temperature of the tangled fiber body is higher than a melting temperature of the resin member. The hardness of the tangled fiber body is lower than the hardness of the resin member.
摘要:
A method for manufacturing a semiconductor device includes forming a laminated structure of a plurality of metal films on a semiconductor substrate using an electroless plating method. The forming of the metal films includes: performing an electroless plating process including a reduction reaction using a first plating tank; and performing an electroless plating process by only a substitution reaction using a second plating tank. The electroless plating process including the reduction reaction that is performed using the first plating tank is performed in a shading environment, and the electroless plating process performed by only the substitution reaction using the second plating tank is performed in a non-shading environment.
摘要:
In a high-tensile steel plate according to the invention, the carbon equivalent Pcm represented in Expression (1) is from 0.180% to 0.220%, the surface hardness is a Vicker's hardness of 285 or less, the ratio of a Martensite Austenite constituent in the surface layer is not more than 10%, the ratio of a mixed structure of ferrite and bainite inside beyond the surface layer is not less than 90%, the ratio of the bainite in the mixed structure is not less than 10%, the thickness of the lath of bainite is not more than 1 μm, the length of the lath is not more than 20 μm, and the segregation ratio as the ratio of the Mn concentration in the center segregation part relative to the Mn concentration at a part in a depth equal to ¼ of the thickness of the plate from the surface is not more than 1.3. Pcm=C+Si/30+(Mn+Cu+Cr)/20+Ni/60+Mo/15+V/10+5B . . . (1) where the element symbols in Expression (1) represent the % by mass of the respective elements. In this way, the high-tensile steel plate according to the invention has a yield strength of at least 551 MPa and a tensile strength of at least 620 MPa as well as high toughness, high propagating shear fracture and high weldability.
摘要翻译:在本发明的高强度钢板中,式(1)所示的碳当量Pcm为0.180〜0.220%,表面硬度为维氏硬度为285以下,马氏体奥氏体成分 表面层不超过10%,铁素体和贝氏体在表面层之外的混合结构的比例不小于90%,混合结构中的贝氏体比不小于10%,厚度 贝氏体的板条的长度不超过1μm,板条的长度不大于20μm,偏析中心偏析部分的Mn浓度相对于一部分的Mn浓度的偏析比 与表面厚度相当的1/4的厚度不大于1.3。 Pcm = C + Si / 30 +(Mn + Cu + Cr)/ 20 + Ni / 60 + Mo / 15 + V / 10 + 5B。 。 。 (1)其中,式(1)中的元素符号表示各元素的质量%。 这样,根据本发明的高强度钢板的屈服强度至少为551MPa,拉伸强度为至少620MPa,韧性高,传播剪切断裂高,焊接性高。
摘要:
Disclosed are a coating method of forming a coating with a stable thickness from a coating solution with a low viscosity employing a slit-type die coater and an organic electroluminescence element prepared employing the coating method. The coating method employing a slit-type die coater comprises the steps of allowing a lip tip of the slit-type die coater to bring close to the substrate to form a coating solution bead between the lip tip and the substrate, and coating on the substrate a coating solution ejected from a slit outlet at the lip tip while relatively moving the slit-type die coater and the substrate, thereby forming at least two coating layers in the stripe shape, featured in that the lip tip has at least one groove in the coating region in the coating width direction, and a pressure at the slit outlet of the coating solution of the bead is negative or zero.