摘要:
Microelectronic devices having a protected input and methods for manufacturing such microelectronic devices. A microelectronic device has a microelectronic die and a support structure for coupling the die to voltage and signal sources. The microelectronic die can have integrated circuitry and a plurality of bond-pads coupled to the integrated circuitry. The bond-pads, for example, can include a reference voltage (Vref) bond-pad and a signal bond-pad adjacent to the Vref bond-pad. The signal bond-pad can be for a clock signal, a data signal, a strobe signal, an address signal, or another type signal for operating the integrated circuitry. The support structure can be a lead frame or a interposing substrate having a plurality of conductive members coupled to the bond-pads of the die. The conductive members can accordingly be metal pins in the case of lead frames or traces and solder ball-pads in the case of interposing substrates. Each conductive member can have a first end with a bond-site proximate to a corresponding bond-pad of the die, a second end defining an external connector, and an elongated conductive section connecting the bond-site to the external connector. The conductive members are generally arranged so that at least some of the bond-sites are arranged in a first row in which the bond-sites and a portion of the elongated sections are spaced apart from one other by a first gap width. The support structure can more specifically include a first conductive member having a first bond-site coupled to the Vref bond-pad by a first wire-bond line and a second conductive member having a second bond-site coupled to the signal bond-pad by a second wire-bond line. The first bond-site of the first conductive member can be spaced apart from the second bond-site of the second conductive member by a second gap width greater than the first gap width.
摘要:
Microelectronic devices having a protected input and methods for manufacturing such microelectronic devices. A microelectronic device has a microelectronic die and a support structure for coupling the die to voltage and signal sources. The microelectronic die can have integrated circuitry and a plurality of bond-pads coupled to the integrated circuitry. The bond-pads, for example, can include a reference voltage (Vref) bond-pad and a signal bond-pad adjacent to the Vref bond-pad. The signal bond-pad can be for a clock signal, a data signal, a strobe signal, an address signal, or another type signal for operating the integrated circuitry. The support structure can be a lead frame or a interposing substrate having a plurality of conductive members coupled to the bond-pads of the die. The conductive members can accordingly be metal pins in the case of lead frames or traces and solder ball-pads in the case of interposing substrates. Each conductive member can have a first end with a bond-site proximate to a corresponding bond-pad of the die, a second end defining an external connector, and an elongated conductive section connecting the bond-site to the external connector. The conductive members are generally arranged so that at least some of the bond-sites are arranged in a first row in which the bond-sites and a portion of the elongated sections are spaced apart from one other by a first gap width. The support structure can more specifically include a first conductive member having a first bond-site coupled to the Vref bond-pad by a first wire-bond line and a second conductive member having a second bond-site coupled to the signal bond-pad by a second wire-bond line. The first bond-site of the first conductive member can be spaced apart from the second bond-site of the second conductive member by a second gap width greater than the first gap width.
摘要:
A microfluidic system with on-chip pumping which can be used for liquid chromatography and also electrospray ionization mass spectrometry and which provides improved efficiency, better integration with sensors, improved portability, reduced power consumption, and reduced cost. The system can include (A) a main chip comprising: a substrate having a front face and a back face; a chromatography column on the front face of said substrate, wherein said column has an inlet and an outlet; an electrospray ionization (ESI) nozzle on the front face of said substrate, wherein said nozzle has an inlet and an outlet, and wherein the inlet of the nozzle is microfluidically coupled to the outlet of the column; one or more pump systems on the front face of said substrate comprising a pump chamber, one or more electrodes, and an outlet microfluidically coupled to the inlet of said column; and (B) a reservoir chip comprising a front surface and a back surface, wherein the reservoir chip has one or more cavities in the back surface which when disposed next to the front surface of the main chip extends the volume of the pump chamber of one of the pump system. Microfabrication can be used to prepare the chips, which can be assembled with a cover and inserted into a testing jig for electronic control and mass spectral analysis. Peptide separations are demonstrated which compete with present commercial systems.
摘要:
In one embodiment of the invention, a method of semaphoring between a system firmware and ACPI subsystem, includes: prior to entering a critical section by a first entity, checking a turn flag to determine if a second entity has a turn to access a critical section; if the second entity has the turn, then checking an In flag of the second entity to determine if the second entity is in the critical section; if the second entity is in the critical section, then waiting for the second entity to exit the critical section; and entering the critical section by the first entity. The method may further include: if the second entity is not in the critical section, then entering the critical section by the first entity.
摘要:
An interface for handing off computer system information. The interface has a data structure stored on a computer readable medium. The data structure has fields for component data pertaining to components of a computer system. The data structure is available to be populated by a first program filling in component data using identifiers for locating the component data in the data structure. The first program is able to discover components. The component data is accessible by a second program indexing the data structure with the identifiers. The second computer program is for assisting an operating system gain the component data.
摘要:
A layout for simultaneously sub-accessible memory modules is disclosed. In one embodiment, a memory module includes a printed circuit board having a plurality of sectors, each sector being electrically isolated from the other sectors and having a multi-layer structure. At least one memory device is attached to each sector, the memory devices being organized into a plurality of memory ranks. A driver is attached to the printed circuit board and is operatively coupled to the memory ranks. The driver is adapted to be coupled to a memory interface of the computer system. Because the sectors are electrically-isolated from adjacent sectors, the memory ranks are either individually or simultaneously, or both individually and simultaneously accessible by the driver so that one or more memory devices on a particular sector may be accessed at one time. In an alternate embodiment, the printed circuit board includes a driver sector electrically isolated from the other sectors and having a multi-layer structure, the driver being attached to the driver sector.
摘要:
A memory module includes a memory hub coupled to several memory devices. The memory hub includes a posted write buffer that stores write requests so that subsequently issued read requests can first be coupled to the memory devices. The write request addresses are also posted in the buffer and compared to subsequent read request addresses. In the event of a positive comparison indicating that a read request is directed to an address to which an earlier write request was directed, the read data are provided from the buffer. When the memory devices are not busy servicing read request, the write requests can be transferred from the posted write buffer to the memory devices. The write requests may also be accumulated in the posted write buffer until either a predetermined number of write requests have been accumulated or the write requests have been posted for a predetermined duration.
摘要:
Described is an electronic device which includes a body, an optical opening in the body and a removable cover. The body contains an optical scanner and a slot for a removable integrated circuit (“IC”) card. The optical opening provides an optical path from an external environment to the optical scanner. The removable cover which, when in a closed position coupled to the body, covers the slot and the optical opening. The cover includes a cover opening extending therethrough and, when the cover is in the closed position, the cover opening is aligned with the optical opening to permit light to enter and exit therethrough.
摘要:
Optically-coupled memory systems are disclosed. In one embodiment, a system memory includes a carrier substrate, and a controller attached to the carrier substrate and operable to transmit and receive optical signals, and first and second memory modules. The module substrate of the first memory module has an aperture formed therein, the aperture being operable to provide an optical path for optical signals between the controller and an optical transmitter/receiver unit of the second memory module. Thus, the system memory provides the advantages of “free space” optical connection in a compact arrangement of memory modules. In an alternate embodiment, the first memory module includes a beam splitter attached to the module substrate proximate the aperture. In another embodiment, the first and second memory modules are staged on the carrier substrate to provide an unobstructed path for optical signals. In another embodiment, the optical transmitter/receiver unit projects outwardly from the module substrate to provide an unobstructed path for optical signals.
摘要:
A method and associated apparatus is provided for improving the performance of a high speed memory bus by substantially eliminating bus reflections caused by electrical stubs. The stubs are substantially eliminated by connecting system components in a substantially stubless configuration using a looping bus for continuing the looping bus through each device. The invention also provides an interface circuit that enables data communications between devices of different technologies. The interface circuit connects to the looping data bus and includes a circuit for providing voltage level, encoding type, and data rate conversions for data received from the looping data bus and intended for use on a second data bus connected to the interface circuit.