摘要:
The present invention is a magnetic head having a helical induction coil and includes hard disk drive devices that utilize the magnetic head. The helical coil is fabricated around a magnetic pole yoke in a series of process steps that include a reactive ion etch (RIE) process step which is utilized to simultaneously form vertical interconnect vias and upper helical coil member trenches. Thereafter, in a single fabrication step, such as by electroplating, the vertical interconnect lines and the upper helical coil traces are created in a single fabrication step, such that they are integrally formed. The vertical interconnect lines provide an electrical connection between outer ends of previously formed lower helical coil traces and outer ends of the integrally formed upper helical coil traces, such that a helical coil is fabricated. In the preferred embodiment, the helical coil is composed of copper.
摘要:
A magnetic head having a helical induction coil. The helical coil is fabricated around a magnetic pole yoke in a series of process steps that include a reactive ion etch (RIE) process step which is utilized to simultaneously form vertical interconnect vias and upper helical coil member trenches. Thereafter, in a single fabrication step, such as by electroplating, the vertical interconnect lines and the upper helical coil traces are created in a single fabrication step, such that they are integrally formed. The vertical interconnect lines provide an electrical connection between outer ends of previously formed lower helical coil traces and outer ends of the integrally formed upper helical coil traces, such that a helical coil is fabricated. In the preferred embodiment, the helical coil is composed of copper.
摘要:
A method for milling a structure. A single- or multi-layer resist having no undercut is added to a surface of a structure to be milled, the surface to be milled defining a plane. A milling process, such as ion milling, is performed. The milling process includes milling the structure at high incidence and milling the structure at razing incidence. The milling process can be performed only once, or repeated multiple times. High incidence can be defined as about 65 to about 90 degrees from the plane of the surface being milled. Razing incidence can be defined as about 0 to about 30 degrees from the plane of the surface being milled.
摘要:
A method for manufacturing a pole tip structure for a magnetic head is provided. An etch stop layer is initially deposited after which a transfer layer is deposited. Further deposited is at least one masking layer. Reactive ion etching is then performed to define a trench in at least the transfer layer. A pole tip layer is then deposited in the trench to define a pole tip structure flanked at least in part by the transfer layer. A surface of the transfer layer or etch stop layer then remains in co-planar relationship with a surface of the pole tip structure.
摘要:
A magnetic tunnel junction (MTJ) memory cell uses a biasing ferromagnetic layer in the MTJ stack of layers that is magnetostatically coupled with the free ferromagnetic layer in the MTJ stack to provide transverse and/or longitudinal bias fields to the free ferromagnetic layer. The MTJ is formed on an electrical lead on a substrate and is made up of a stack of layers. The layers in the MTJ stack are an antiferromagnetic layer, a fixed ferromagnetic layer exchange biased with the antiferromagnetic layer so that its magnetic moment cannot rotate in the presence of an applied magnetic field, an insulating tunnel barrier layer in contact with the fixed ferromagnetic layer, a free ferromagnetic layer in contact with the tunnel barrier layer and whose magnetic moment is free to rotate in the presence of an applied magnetic field, and whose moment, in the absence of any applied field, is generally either parallel or antiparallel to that of the fixed ferromagnetic layer, a biasing ferromagnetic layer that has its magnetic moment aligned generally in the plane of the MTJ, and a nonferromagnetic electrically conductive spacer layer separating the biasing ferromagnetic layer from the other layers in the stack. The self field or demagnetizing field from the biasing layer magnetostatically couples with the edges of the free layer so as to provide a transverse bias field, which results in a coherent rotation of the moment of the free layer, and/or a longitudinal bias field, which assures that the two states of the memory cell are equally stable with respect to magnetic field excursions.
摘要:
A magnetic tunnel junction (MTJ) magnetoresistive (MR) read head has one fixed ferromagnetic layer and one sensing ferromagnetic layer on opposite sides of the tunnel barrier layer, and with a biasing ferromagnetic layer in the MTJ stack of layers that is magnetostatically coupled with the sensing ferromagnetic layer to provide either longitudinal bias or transverse bias or a combination of longitudinal and transverse bias fields to the sensing ferromagnetic layer. The magnetic tunnel junction in the MTJ MR head is formed on an electrical lead on a substrate and is made up of a stack of layers. The layers in the stack are an antiferromagnetic layer, a fixed ferromagnetic layer exchange biased with the antiferromagnetic layer so that its magnetic moment cannot rotate in the presence of an applied magnetic field, an insulating tunnel barrier layer in contact with the fixed ferromagnetic layer, a sensing ferromagnetic layer in contact with the tunnel barrier layer and whose magnetic moment is free to rotate in the presence of an applied magnetic field, a biasing ferromagnetic layer that has its magnetic moment aligned generally within the plane of the device and a nonmagnetic electrically conductive spacer layer separating the biasing ferromagnetic layer from the other layers in the stack. The self field or demagnetizing field from the biasing ferromagnetic layer magnetostatically couples with the edges of the sensing ferromagnetic layer to stabilize its magnetic moment, and, to linearize the output of the device. The electrically conductive spacer layer prevents direct ferromagnetic coupling between the biasing ferromagnetic layer and the other layers in the stack and allows sense current to flow perpendicularly through the layers in the MTJ stack.
摘要:
A magnetic tunnel junction (MTJ) magnetoresistive read head for a magnetic recording system has the MTJ device located between two spaced-apart magnetic shields. The magnetic shields, which allow the head to detect individual magnetic transitions from the magnetic recording medium without interference from neighboring transitions, also function as electrical leads for connection of the head to sense circuitry. Electrically conductive spacer layers are located at the top and bottom of the MTJ device and connect the MTJ device to the shields. The thickness of the spacer layers is selected to optimize the spacing between the shields, which is a parameter that controls the linear resolution of the data that can be read from the magnetic recording medium. To reduce the likelihood of electrical shorting between the shields if the shield-to-shield spacing is too small, each of the shields can have a pedestal region with the MTJ device located between the two pedestals, so that the shield-to-shield spacing outside the pedestal regions is greater than in the pedestal regions.
摘要:
A method of making a read sensor while protecting it from electrostatic discharge (ESD) damage involves forming a severable shunt during the formation of the read sensor. The method may include forming a resist layer over a plurality of read sensor layers; performing lithography with use of a mask to form the resist layer into a patterned resist which exposes left and right side regions over the read sensor layers as well as a shunt region; etching, with the patterned resist in place, to remove materials in the left and right side regions and in the shunt region; and depositing, with the patterned resist in place, left and right hard bias and lead layers in the left and right side regions, respectively, and in the shunt region for forming a severable shunt which electrically couples the left and right hard bias and lead layers together for ESD protection.
摘要:
An embodiment of the invention is a magnetic head with overlaid lead pads that contact the top surface of the sensor between the hardbias structures and do not contact the hardbias structures which are electrically insulated from direct contact with the sensor. The lead pad contact area on the top of the sensor is defined by sidewall deposition of a conductive material to form leads pads on a photoresist prior to formation of the remainder of the leads. The conductive material for the lead pads is deposited at a shallow angle to maximize the sidewall deposition on the photoresist, then ion-milled at a high angle to remove the conductive material from the field while leaving the sidewall material. An insulation layer is deposited on the lead material at a high angle, then milled at a shallow angle to remove insulation from the sidewall.
摘要:
A method is described which uses a CMP slurry with an abrasive of spherical particles to lift-off photoresist used in the patterning of the sensor for a magnetic transducer. The spherical particles, preferably less than 0.015 microns, are preferably silica, alumina, titania or zirconia with colloidal silica being preferred. An alternative method of fabricating a CPP sensor structure according to the invention deposits a dielectric or CMP resistant metal over the hard bias structure. The CMP-resistant metal is preferably selected from the group consisting of rhodium, chromium, vanadium and platinum. A CMP resistant mask deposited over the dielectric or CMP-resistant metal can include an optional adhesion layer such as tantalum followed by a DLC layer. The CMP-assisted lift-off of the photoresist and the excess materials is executed at this point. The photoresist used to protect the selected area of the sensor structure is lifted-off using the slurry.