摘要:
A method for operating an ion source having a filament-cathode and an anode. The method includes supplying direct current electrical power between the anode and the filament-cathode characterized by substantially constant arc current there between and varying arc voltage on the filament-cathode. Direct current electrical power is also supplied across the filament-cathode. The value of the arc voltage is monitored and the magnitude of electrical power supplied to the filament-cathode is altered in response to detected changes in the arc voltage to return the arc voltage to substantially a preset reference value. The monitoring step and the altering step are carried out at regular preset intervals. The altering step includes deriving an filament power error signal as a prearranged function which includes the difference in values between the monitored arc voltage and the preset reference value multiplied by a predefined integral gain value. The altering step also includes altering the magnitude of electrical power supplied to the filament-cathode by the value of the filament power error signal.
摘要:
An ion implantation system includes a beam generating arrangement for generating an ion beam characterized by good beam stability and for directing the ion beam along a prearranged path. A beam stopping arrangement is disposed in the path of the beam for stopping and collecting the ions in the beam. A workpiece scanning arrangement is positioned upstream of the beam stopping arrangement for scanning a workpiece through the beam in a prearranged combined fast scan directional motion and a slow scan directional motion with the slow scan directional motion being characterized by an end of scan position in which the ion beam falls completely on the beam stopping arrangement. A dose measuring arrangement is coupled to the beam stopping arrangement and includes arrangements for measuring the ion beam current on the beam stop at the end of scan position of the workpiece scanning arrangement, for calculating the average ion beam current striking the workpiece during each slow scan directional motion as the average of two successive ion beam current measurements before and after the motion, and for calculating the ion dose delivered to the workpiece based on the calculated average ion beam current and know geometrical factors associated with the fast and slow scan motions.
摘要:
Semiconductor processing apparatus is disclosed which provides for movement of a scanning arm 60 of a substrate or wafer holder 180, in at least two generally orthogonal directions (so-called X-Y scanning). Scanning in a first direction is longitudinally through an aperture 55 in a vacuum chamber wall. The arm 60 is reciprocated by one or more linear motors 90A, 90B. The arm 60 is supported relative to a slide 100 using gimballed air bearings so as to provide cantilever support for the arm relative to the slide 100. A compliant feedthrough 130 into the vacuum chamber for the arm 60 then acts as a vacuum seal and guide but does not itself need to provide bearing support. A Faraday 450 is attached to the arm 60 adjacent the substrate holder 180 to allow beam profiling to be carried out both prior to and during implant. The Faraday 450 can instead or additionally be mounted adjacent the rear of the substrate holder or at 90° to it to allow beam profiling to be carried out prior to implant, with the substrate support reversed or horizontal and out of the beam line.
摘要:
An implanter provides two-dimensional scanning of a substrate relative to an implant beam so that the beam draws a raster of scan lines on the substrate. The beam current is measured at turnaround points off the substrate and the current value is used to control the subsequent fast scan speed so as to compensate for the effect of any variation in beam current on dose uniformity in the slow scan direction. The scanning may produce a raster of non-intersecting uniformly spaced parallel scan lines and the spacing between the lines is selected to ensure appropriate dose uniformity.
摘要:
An implanter provides two-dimensional scanning of a substrate relative to an implant beam so that the beam draws a raster of scan lines on the substrate. The beam current is measured at turnaround points off the substrate and the current value is used to control the subsequent fast scan speed so as to compensate for the effect of any variation in beam current on dose uniformity in the slow scan direction. The scanning may produce a raster of non-intersecting uniformly spaced parallel scan lines and the spacing between the lines is selected to ensure appropriate dose uniformity.
摘要:
This invention relates to an ion beam monitoring arrangement for use in an ion implanter where it is desirable to monitor the flux and/or a cross-sectional profile of the ion beam used for implantation. It is often desirable to measure the flux and/or cross-sectional profile of an ion beam in an ion implanter in order to improve control of ion implantation of a semiconductor wafer or similar. The present invention describes adapting the wafer holder to allow such beam profiling to be performed. The substrate holder may be used progressively to occlude the ion beam from a downstream flux monitor or a flux monitor may be located on the wafer holder that is provided with a slit entrance aperture.
摘要:
A controlled deceleration potential is provided in an ion implanter between the target and the flight tube through the mass selector, by means of a variable resistance comprising a series of HEXFETs. The series of HEXFETs conduct current absorbed by the substrate back to the flight tube so that a desired decelertion potential can be formed.
摘要:
An implanter provides two-dimensional scanning of a substrate relative to an implant beam so that the beam draws a raster of scan lines on the substrate. The beam current is measured at turnaround points off the substrate and the current value is used to control the subsequent fast scan speed so as to compensate for the effect of any variation in beam current on dose uniformity in the slow scan direction. The scanning may produce a raster of non-intersecting uniformly spaced parallel scan lines and the spacing between the lines is selected to ensure appropriate dose uniformity.
摘要:
An implanter provides two-dimensional scanning of a substrate relative to an implant beam so that the beam draws a raster of scan lines on the substrate. The beam current is measured at turnaround points off the substrate and the current value is used to control the subsequent fast scan speed so as to compensate for the effect of any variation in beam current on dose uniformity in the slow scan direction. The scanning may produce a raster of non-intersecting uniformly spaced parallel scan lines and the spacing between the lines is selected to ensure appropriate dose uniformity.
摘要:
An implanter provides two-dimensional scanning of a substrate relative to an implant beam so that the beam draws a raster of scan lines on the substrate. The beam current is measured at turnaround points off the substrate and the current value is used to control the subsequent fast scan speed so as to compensate for the effect of any variation in beam current on dose uniformity in the slow scan direction. The scanning may produce a raster of non-intersecting uniformly spaced parallel scan lines and the spacing between the lines is selected to ensure appropriate dose uniformity.