Abstract:
A mechanism is provided for enhancing the sensitivity of an ion-sensitive semiconductor device by creating a second gate coupled to a sense plate that can improve the amount of charge brought to the ion-sensitive semiconductor device conductivity modulated region (e.g., a channel region of an ISFET). This is accomplished by utilizing a buried dielectric layer associated with the ion-sensitive semiconductor device conductivity modulated region as the second gate dielectric. The buried dielectric layer is coupled to the sense plate using an isolated well region as a conductor that is coupled to metal layers extending to the sense plate. Some embodiments further use the buried dielectric layer as the sole gate dielectric for the semiconductor device, thereby allowing the traditional gate dielectric region to be coupled to a protection diode. This protection diode then protects the gate dielectric from plasma induced damage and electrostatic discharge.
Abstract:
A method for making a semiconductor structure includes forming an oxide layer onto non-volatile memory, high, and low voltage device regions of a substrate and forming a first gate material layer over the oxide layer. The first gate material layer is patterned to form a set of memory device select gates in the non-volatile memory device region and a set of gates in the high voltage device region. The patterning is performed while maintaining the oxide and first gate material layers over the low voltage device region. The method also includes forming a second gate material layer over the structure and forming a non-volatile storage layer between the set of select gates and the second gate material layer, from which a set of memory device control gates is patterned. Thereafter, the first gate material layer is patterned to form a set of gates in the low voltage device region.
Abstract:
A device includes a semiconductor substrate having a first conductivity type, a device isolating region in the semiconductor substrate, defining an active area, and having a second conductivity type, a body region in the active area and having the first conductivity type, and a drain region in the active area and spaced from the body region to define a conduction path of the device, the drain region having the second conductivity type. At least one of the body region and the device isolating region includes a plurality of peripheral, constituent regions disposed along a lateral periphery of the active area, each peripheral, constituent region defining a non-uniform spacing between the device isolating region and the body region. The non-uniform spacing at a respective peripheral region of the plurality of peripheral, constituent regions establishes a first breakdown voltage lower than a second breakdown voltage in the conduction path.
Abstract:
A method of forming a semiconductor device using a substrate includes forming a first select gate over the substrate, a charge storage layer over the first select gate, over the second select gate, and over the substrate in a region between the first select gate and the second select gate, wherein the charge storage layer is conformal, and a control gate layer over the charge storage layer, wherein the control gate layer is conformal. The method further includes performing a first implant that penetrates through the control gate layer in a middle portion of the region between the first select gate and the second select gate to the substrate to form a doped region in the substrate in a first portion of the region between the first select gate and the second select gate that does not reach the first select gate and does not reach the second select gate.
Abstract:
Embodiments of semiconductor devices and driver circuits include a semiconductor substrate having a first conductivity type, an isolation structure (including a sinker region and a buried layer), an active device within area of the substrate contained by the isolation structure, and a diode circuit. The buried layer is positioned below the top substrate surface, and has a second conductivity type. The sinker region extends between the top substrate surface and the buried layer, and has the second conductivity type. The active device includes a body region of the second conductivity type, and the diode circuit is connected between the isolation structure and the body region. The diode circuit may include one or more Schottky diodes and/or PN junction diodes. In further embodiments, the diode circuit may include one or more resistive networks in series and/or parallel with the Schottky and/or PN diode(s).
Abstract:
A device includes a semiconductor substrate having a first conductivity type, a device isolating region in the semiconductor substrate, defining an active area, and having a second conductivity type, a body region in the active area and having the first conductivity type, and a drain region in the active area and spaced from the body region to define a conduction path of the device, the drain region having the second conductivity type. At least one of the body region and the device isolating region includes a plurality of peripheral, constituent regions disposed along a lateral periphery of the active area, each peripheral, constituent region defining a non-uniform spacing between the device isolating region and the body region. The non-uniform spacing at a respective peripheral region of the plurality of peripheral, constituent regions establishes a first breakdown voltage lower than a second breakdown voltage in the conduction path.
Abstract:
Embodiments include methods of forming a semiconductor device having a first conductivity type, an isolation structure (including a sinker region and a buried layer), an active device within area of the substrate contained by the isolation structure, and a diode circuit. The buried layer is positioned below the top substrate surface, and has a second conductivity type. The sinker region extends between the top substrate surface and the buried layer, and has the second conductivity type. The active device includes a source region of the first conductivity type, and the diode circuit is connected between the isolation structure and the source region. The diode circuit may include one or more Schottky diodes and/or PN junction diodes. In further embodiments, the diode circuit may include one or more resistive networks in series and/or parallel with the Schottky and/or PN diode(s).
Abstract:
Embodiments of semiconductor devices and driver circuits include a semiconductor substrate having a first conductivity type, an isolation structure (including a sinker region and a buried layer), an active device within area of the substrate contained by the isolation structure, and a diode circuit. The buried layer is positioned below the top substrate surface, and has a second conductivity type. The sinker region extends between the top substrate surface and the buried layer, and has the second conductivity type. The active device includes a drain region of the second conductivity type, and the diode circuit is connected between the isolation structure and the drain region. The diode circuit may include one or more Schottky diodes and/or PN junction diodes. In further embodiments, the diode circuit may include one or more resistive networks in series and/or parallel with the Schottky and/or PN diode(s).
Abstract:
Zener diode structures and related fabrication methods and semiconductor devices are provided. An exemplary semiconductor device includes first and second Zener diode structures. The first Zener diode structure includes a first region, a second region that is adjacent to the first region, and a third region adjacent to the first region and the second region to provide a junction that is configured to influence a first reverse breakdown voltage of a junction between the first region and the second region. The second Zener diode structure includes a fourth region, a fifth region that is adjacent to the fourth region, and a sixth region adjacent to the fourth region and the fifth region to provide a junction configured to influence a second reverse breakdown voltage of a junction between the fourth region and the fifth region, wherein the second reverse breakdown voltage and the first reverse breakdown voltage are different.