摘要:
In a semiconductor device having a heat radiation plate, the tips of inner leads connected to a semiconductor chip have a lead width w and a lead thickness t, the width being less than the thickness. The inner leads are secured to the heat radiation plate. Fastening the inner leads to the heat radiation plate supports the latter and eliminates the need for suspending leads. A lead pitch p, the lead width w and lead thickness t of the inner lead tips connected to the semiconductor chip have the relations of w
摘要:
In a semiconductor device having a heat radiation plate, the tips of inner leads connected to a semiconductor chip have a lead width w and a lead thickness t, the width being less than the thickness. The inner leads are secured to the heat radiation plate. Fastening the inner leads to the heat radiation plate supports the latter and eliminates the need for suspending leads. A lead pitch p, the lead width w and lead thickness t of the inner lead tips connected to the semiconductor chip have the relations of w
摘要:
In a semiconductor device having a heat radiation plate, the tips of inner leads connected to a semiconductor chip have a lead width w and a lead thickness t, the width being less than the thickness. The inner leads are secured to the heat radiation plate. Fastening the inner leads to the heat radiation plate supports the latter and eliminates the need for suspending leads. A lead pitch p, the lead width w and lead thickness t of the inner lead tips connected to the semiconductor chip have the relations of w
摘要:
A multi-function structure of a plug-in universal IC card is to be promoted and the manufacturing cost is to be reduced. The body of the plug-in UICC is constructed of a molding resin. A tape substrate and a chip mounted on one side of the tape substrate are sealed in the interior of the molding resin. A side opposite to the chip mounting side of the tape substrate is exposed to the exterior of the molding resin and constitutes a surface portion of the plug-in UICC. Contact patterns serving as external terminals of the plug-in UICC are formed on the surface of the tape substrate exposed to the exterior of the molding resin. In the plug-in UICC whose body is constructed of molding resin, cracking of the chip can be prevented effectively even in the case where the chip is large-sized.
摘要:
A multi-function structure of a plug-in universal IC card is to be promoted and the manufacturing cost is to be reduced. The body of the plug-in UICC is constructed of a molding resin. A tape substrate and a chip mounted on one side of the tape substrate are sealed in the interior of the molding resin. A side opposite to the chip mounting side of the tape substrate is exposed to the exterior of the molding resin and constitutes a surface portion of the plug-in UICC. Contact patterns serving as external terminals of the plug-in UICC are formed on the surface of the tape substrate exposed to the exterior of the molding resin. In the plug-in UICC whose body is constructed of molding resin, cracking of the chip can be prevented effectively even in the case where the chip is large-sized.
摘要:
A display device includes a light source; a light deflector configured to deflect light emitted from the light source to scan as scanning light in a main scanning direction and a sub-scanning direction; a screen having a scanning area to be two-dimensionally scanned with the scanning light at a predetermined cycle, the scanning area having a first area and a second area that differ in position in the sub-scanning direction; a light receiver disposed on the screen, configured to detect the light scanning in each of the first area and the second area of the screen; and a control unit configured to adjust a position of the scanning light in the scanning area according to the number of scanning lines in each of the first area and the second area.
摘要:
An electrostatic latent image forming method for forming, on an image carrier, an electrostatic latent image that has a pattern where there are an irradiated area and a not-irradiated area in a mixed manner, the electrostatic latent image forming method comprises; adjusting an exposure condition of an irradiated area that is included in the irradiated area and is adjacent to the not-irradiated area so that an electric field intensity of an electrostatic latent image that corresponds to the not-irradiated area is increased so as to prevent adhesion of a developer, and irradiating the image carrier with light under the adjusted exposure condition.
摘要:
There is provided a semiconductor device. An n-type transistor is formed on a (551) surface of a silicon substrate. A silicide layer region in contact with a diffusion region (heavily doped region) of the n-type transistor has a thickness not more than 5 nm. A metal layer region in contact with the silicide layer has a thickness of 25 nm (inclusive) to 400 nm (inclusive). A barrier height between the silicide layer region and the diffusion region has a minimum value in this thickness relationship.
摘要:
A semiconductor device disclosed in this description has a semiconductor substrate including an element region in which a semiconductor element is formed, and an upper surface electrode formed on an upper surface of the element region of the semiconductor substrate. The upper surface electrode has a first thickness region and a second thickness region which is thicker than the first thickness region, and a bonding wire is bonded on the second thickness region.
摘要:
An imaging optical system, an imaging device, and a digital apparatus have a four lens construction with positive, negative, positive, and negative refractive powers. A surface position at the maximum effective diameter of the second lens element is located on the object side than a surface vertex thereof. The fourth lens element has an inflection point at a position other than the intersection of the optical axis and the fourth lens element. The optical system satisfies the following conditions. 0.7 72 ν4>50, and 0.55