Abstract:
A semiconductor laser array includes: a plurality of semiconductor lasers configured to oscillate in a single mode at oscillation wavelengths different from one another, each semiconductor laser including an active layer including a multi-quantum well structure including a plurality of will layers and a plurality of barrier layers laminated alternately, and an n-side separate confinement heterostructure layer and p-side separate confinement heterostructure layer configured to sandwich the active layer therebetween in a thickness direction, band gap energies of the n-side separate confinement heterostructure layer and the p-side separate confinement heterostructure layer being greater than band gap energies of the barrier layers of the active layer. The active layer is doped with an n-type impurity.
Abstract:
A semiconductor device of the invention is formed so that n-type InP current blocking layers enter the inside of p-type InP cladding layers, i.e., the n-type current blocking layers ride over the upper part of the p-type InP cladding layers, so that a distance between the n-type InP current block layers composing a current blocking region is narrower than a width of the p-type cladding layers contacting with the n-type InP current blocking layers. Thereby, the semiconductor device whose leak current in the current blocking region may be reduced which permits high-output and high-temperature operations may be readily fabricated.
Abstract:
A circuit conductor is provided on a base. A semiconductor laser is connected to the circuit conductor. Cutout parts on which the circuit conductor is not formed are provided at, for example, the vicinity of the four corners of the base, and a hole is provided at each of the said portions. The holes penetrate the base. Fixing members are inserted through the holes. The fixing members are, for example, male threads. Since the head part of the fixing members is located in the cutout part, the fixing members and the circuit conductor are not in contact with each other. A platform has holes formed at portions corresponding to the holes in the optical unit and female threads formed on the inner surface. The fixing members and the platform are therefore joined. As a result, the optical unit is fixed to the platform.
Abstract:
A circuit conductor is provided on a base. A semiconductor laser is connected to the circuit conductor. Cutout parts on which the circuit conductor is not formed are provided at, for example, the vicinity of the four corners of the base, and a hole is provided at each of the said portions. The holes penetrate the base. Fixing members are inserted through the holes. The fixing members are, for example, male threads. Since the head part of the fixing members is located in the cutout part, the fixing members and the circuit conductor are not in contact with each other. A platform has holes formed at portions corresponding to the holes in the optical unit and female threads formed on the inner surface. The fixing members and the platform are therefore joined. As a result, the optical unit is fixed to the platform.
Abstract:
A method of designing a semiconductor laser device includes: controlling a distance between the output-side reflection unit and the second reflection unit and an effective optical feedback κ to the semiconductor laser element, the effective optical feedback κ defined by a below-presented formula (1) including a circulating time τ of the light in the semiconductor laser element, a reflectivity R1 of the output-side reflection unit, and a reflectivity R2 of the second reflection unit; selecting a semiconductor laser device in which an LFF period is equal to or smaller than 20 ns as a semiconductor laser device in which high speed switching occurs between an FBG mode and an FP mode; and using the selected semiconductor laser device as an semiconductor laser device oscillating in a coherent collapse mode. κ=(1/τ)×(1−R1)×(R2/R1)1/2 (1)
Abstract:
An optical semiconductor device outputting a predetermined wavelength of laser light includes: a quantum well active layer positioned between a p-type cladding layer and an n-type cladding layer in thickness direction; a separate confinement heterostructure layer positioned between the quantum well active layer and the n-type cladding layer; and an electric-field-distribution-control layer positioned between the separate confinement heterostructure layer and the n-type cladding layer and configured by at least two semiconductor layers having band gap energy greater than band gap energy of a barrier layer constituting the quantum well active layer.
Abstract:
An optical semiconductor device outputting a predetermined wavelength of laser light includes a quantum well active layer positioned between a p-type cladding layer and an n-type cladding layer in thickness direction. The optical semiconductor device includes a separate confinement heterostructure layer positioned between the quantum well active layer and the n-type cladding layer. The optical semiconductor device further includes an electric-field-distribution-control layer positioned between the separate confinement heterostructure layer and the n-type cladding layer and configured by at least two semiconductor layers having band gap energy greater than band gap energy of a barrier layer constituting the quantum well active layer. The optical semiconductor device is applied to a ridge-stripe type laser.
Abstract:
An optical semiconductor device outputting a predetermined wavelength of laser light includes a quantum well active layer positioned between a p-type cladding layer and an n-type cladding layer in thickness direction. The optical semiconductor device includes a separate confinement heterostructure layer positioned between the quantum well active layer and the n-type cladding layer. The optical semiconductor device further includes an electric-field-distribution-control layer positioned between the separate confinement heterostructure layer and the n-type cladding layer and configured by at least two semiconductor layers having band gap energy greater than band gap energy of a barrier layer constituting the quantum well active layer. The quantum well active layer is doped with 0.3 to 1×1018/cm3 of n-type impurity.
Abstract:
A distributed feedback (DFB) laser outputting a predetermined wavelength of laser light includes a quantum well active layer positioned between a p-type cladding layer and an n-type cladding layer in thickness direction. The DFB laser includes a separate confinement heterostructure layer positioned between the quantum well active layer and then-type cladding layer. The DFB laser includes an electric-field-distribution-control layer positioned between the separate confinement heterostructure layer and then-type cladding layer and configured by at least two semiconductor layers having band gap energy greater than band gap energy of a barrier layer constituting the quantum well active layer. The DFB laser has a function to select a specific wavelength by returning a specific wavelength in the wavelength-variable laser.
Abstract:
An optical semiconductor device outputting a predetermined wavelength of laser light includes a quantum well active layer positioned between a p-type cladding layer and an n-type cladding layer in thickness direction. The optical semiconductor device includes a separate confinement heterostructure layer positioned between the quantum well active layer and the n-type cladding layer. The optical semiconductor device further includes an electric-field-distribution-control layer positioned between the separate confinement heterostructure layer and the n-type cladding layer and configured by at least two semiconductor layers having band gap energy greater than band gap energy of a barrier layer constituting the quantum well active layer. The optical semiconductor device is applied to a ridge-stripe type laser.