摘要:
A method can include applying a patterned mask over a semiconductor structure, the semiconductor structure having a dielectric layer, forming using the patterned mask a material formation trench intermediate first and second spaced apart metal formations formed in the dielectric layer, and disposing a dielectric material formation in the material formation trench.
摘要:
Integrated circuits and methods for fabricating integrated circuits are provided. In one example, a method for fabricating an integrated circuit includes depositing an organic dielectric material overlying a semiconductor substrate for forming an organic interlayer dielectric (OILD) layer. An opening is formed in the OILD layer and a conductive metal fill is deposited in the opening for forming a metal line and/or a via.
摘要:
During formation of a trench silicide contact, a sacrificial layer is incorporated into the trench directly over source/drain junctions prior to metallization of the trench. Selective removal of the sacrificial layer widens the trench proximate to the source/drain junctions, increasing the contact area and correspondingly decreasing the contact resistance between the source/drain junctions and a silicide layer.
摘要:
A methodology enabling filling of high aspect ratio cavities, with no voids or gaps, in an IC device and the resulting device are disclosed. Embodiments include providing active area and/or gate contacts in a first ILD; forming selective protective caps on upper surfaces of the contacts; forming a second ILD on upper surfaces of the protective caps and on an upper surface of the first ILD; forming a hard-mask stack on the second ILD; forming, in the second ILD and hard-mask stack, cavities exposing one or more protective caps; removing selective layers in the stack to decrease depths of the cavities; and filling the cavities with a metal layer, wherein the metal layer in one or more cavities connects to an upper surface of the one or more exposed protective caps.
摘要:
One illustrative MPT device disclosed herein includes an active region and an inactive region, isolation material positioned between the active region and the inactive region, the isolation material electrically isolating the active region from the inactive region, and an FG MTP cell formed in the active region. In this example, the FG MTP cell includes a floating gate, wherein first, second and third portions of the floating gate are positioned above the active region, the inactive region and the isolation material, respectively, and a control gate positioned above at least a portion of the inactive region, wherein the control gate is positioned above an upper surface and adjacent opposing sidewall surfaces of at least a part of the second portion of the floating gate.
摘要:
The present disclosure relates to semiconductor structures and, more particularly, to interconnect structures with reduced capacitance and methods of manufacture. The method includes: forming one or more lower metal lines in a dielectric material; forming an airgap structure in an upper dielectric material above the one or more lower metal lines, by subjecting material to a curing process; and forming an upper metal structure above the airgap structure.
摘要:
The disclosure is directed to a method for lithographic patterning. The method may include: exposing a photoresist to a radiant energy; developing the photoresist in a first developer, thereby creating an opening within the photoresist including sidewalls having a slant; and developing the photoresist in a second developer immediately after the developing of the photoresist in the first developer, thereby reducing the slant of the sidewalls of the opening. Where the photoresist is a positive tone development (PTD) photoresist, the first developer may include a positive developer, and the second developer may include a negative developer. Where the photoresist is a negative tone development (NTD) photoresist, the first developer may include a negative developer, and the second developer may include a positive developer.
摘要:
One illustrative method disclosed herein includes, among other things, selectively forming a sacrificial material on an upper surface of a top electrode of a memory cell, forming at least one layer of insulating material around the sacrificial material and removing the sacrificial material so as to form an opening in the at least one layer of insulating material, wherein the opening exposes the upper surface of the top electrode. The method also includes forming an internal sidewall spacer within the opening in the at least one layer of insulating material and forming a conductive contact structure that is conductively coupled to the upper surface of the top electrode, wherein a portion of the conductive contact structure is surrounded by the internal sidewall spacer.
摘要:
One illustrative MPT device disclosed herein includes an active region and an inactive region, isolation material positioned between the active region and the inactive region, the isolation material electrically isolating the active region from the inactive region, and an FG MTP cell formed in the active region. In this example, the FG MTP cell includes a floating gate, wherein first, second and third portions of the floating gate are positioned above the active region, the inactive region and the isolation material, respectively, and a control gate positioned above at least a portion of the inactive region, wherein the control gate is positioned above an upper surface and adjacent opposing sidewall surfaces of at least a part of the second portion of the floating gate.
摘要:
Methodologies and a device for reducing capacitance and improving profile control are provided. Embodiments include forming metal vias in a first dielectric layer; forming a graded interlayer dielectric over the metal vias; forming a metal layer in the graded ILD over one of the metal vias; and forming a hydrogenated amorphous silicon carbon film over the metal layer.