Abstract:
A semiconductor device with a semiconductor-on-insulator (SOI) structure is provided including an insulating layer and a semiconductor layer formed on the insulating layer and a fuse. The fuse includes a first at least partially silicided raised semiconductor region with a first silicided portion and, adjacent to the first at least partially silicided raised semiconductor region, a second at least partially silicided raised semiconductor region with a second silicided portion. The second silicided portion is formed in direct physical contact with the first silicided portion.
Abstract:
Integrated circuits including electronic fuse structures are disclosed. In some examples, the electronic fuse structure includes a fuse part and first and second pre-heating lines positioned generally parallel to and co-planar with the fuse part, and electrically connected with the fuse part. The electronic fuse structure also includes a cathode physically and electrically connected to the first pre-heating line and an anode physically and electrically connected to the second pre-heating line.
Abstract:
An approach is provided for semiconductor devices including an anti-fuse structure. The semiconductor device includes a first metallization layer including a first portion of a first electrode and a second electrode, the second electrode being formed in a substantially axial plane surrounding the first portion of the first electrode, with a dielectric material in between the two electrodes. An ILD is formed over the first metallization layer, a second metallization layer including a second portion of the first electrode is formed over the ILD, and at least one via is formed through the ILD, electrically connecting the first and second portions of the first electrode. Breakdown of the dielectric material is configured to enable an operating current to flow between the second electrode and the first electrode in a programmed state of the anti-fuse structure.
Abstract:
The present disclosure relates to a semiconductor structure comprising a resistor, at least part of the resistor forming a meandering shape in a vertical direction with respect to a substrate of the semiconductor structure. The disclosure further relates to a semiconductor manufacturing process comprising a step for realizing at least one first fin, and a step for realizing a resistor comprising a meandering shape in a vertical direction based on the at least one first fin.
Abstract:
Metal fuses in semiconductor devices may be formed on the basis of additional mechanisms for obtaining superior electromigration in the fuse bodies. To this end, the compressive stress caused by the current-induced metal diffusion may be restricted or reduced in the fuse body, for instance, by providing a stress buffer region and/or by providing a dedicated metal agglomeration region. The concept may be applied to the metallization system and may also be used in the device level, when fabricating the metal fuse in combination with high-k metal gate electrode structures.
Abstract:
Integrated circuits including electronic fuse structures are disclosed. In some examples, the electronic fuse structure includes a fuse part and first and second pre-heating lines positioned generally parallel to and co-planar with the fuse part, and electrically connected with the fuse part. The electronic fuse structure also includes a cathode physically and electrically connected to the first pre-heating line and an anode physically and electrically connected to the second pre-heating line.
Abstract:
Integrated circuits including electronic fuse structures are disclosed. In some examples, the electronic fuse structure includes a fuse part and first and second pre-heating lines positioned generally parallel to and co-planar with the fuse part, and electrically connected with the fuse part. The electronic fuse structure also includes a cathode physically and electrically connected to the first pre-heating line and an anode physically and electrically connected to the second pre-heating line.
Abstract:
A method of forming a semiconductor device including the steps of forming an electrically programmable fuse (e-fuse) on an isolation region and a transistor on an active region of a wafer, wherein forming the transistor includes forming a dummy gate above a substrate, removing the dummy gate and forming a metal gate in place of the dummy gate, and forming the e-fuse includes forming a metal-containing layer above the isolation region, forming a semiconductor layer on the metal-containing layer during the process of forming the dummy gate and of the same material as the dummy gate, forming a hard mask layer on the semiconductor layer formed on the metal-containing layer, and forming contact openings in the hard mask layer and semiconductor layer during the process of removing the dummy gate.
Abstract:
Metal fuses in semiconductor devices may be formed on the basis of additional mechanisms for obtaining superior electromigration in the fuse bodies. To this end, the compressive stress caused by the current-induced metal diffusion may be restricted or reduced in the fuse body, for instance, by providing a stress buffer region and/or by providing a dedicated metal agglomeration region. The concept may be applied to the metallization system and may also be used in the device level, when fabricating the metal fuse in combination with high-k metal gate electrode structures.
Abstract:
A semiconductor device with a semiconductor-on-insulator (SOI) structure is provided including an insulating layer and a semiconductor layer formed on the insulating layer and a fuse. The fuse includes a first at least partially silicided raised semiconductor region with a first silicided portion and, adjacent to the first at least partially silicided raised semiconductor region, a second at least partially silicided raised semiconductor region with a second silicided portion. The second silicided portion is formed in direct physical contact with the first silicided portion.