摘要:
Packaged microelectronic elements are provided. In an exemplary embodiment, a microelectronic element having a front face and a plurality of peripheral edges bounding the front face has a device region at the front face and a contact region with a plurality of exposed contacts adjacent to at least one of the peripheral edges. The packaged element may include a plurality of support walls overlying the front face of the microelectronic element such that a lid can be mounted to the support walls above the microelectronic element. For example, the lid may have an inner surface confronting the front face. In a particular embodiment, some of the contacts can be exposed beyond edges of the lid.
摘要:
Packaged microelectronic elements are provided. In an exemplary embodiment, a microelectronic element having a front face and a plurality of peripheral edges bounding the front face has a device region at the front face and a contact region with a plurality of exposed contacts adjacent to at least one of the peripheral edges. The packaged element may include a plurality of support walls overlying the front face of the microelectronic element such that a lid can be mounted to the support walls above the microelectronic element. For example, the lid may have an inner surface confronting the front face. In a particular embodiment, some of the contacts can be exposed beyond edges of the lid.
摘要:
Methods are provided for making a plurality of lidded microelectronic elements. In an exemplary embodiment, a lid wafer is assembled with a device wafer. Desirably, the lid wafer is severed into a plurality of lid elements to remove portions of the lid wafer overlying contacts at a front face of the device wafer adjacent to dicing lanes of the device wafer. Thereafter, desirably, the device wafer is severed along the dicing lanes to provide a plurality of lidded microelectronic elements.
摘要:
A method is provided for fabricating a unit including a semiconductor element such as a sensor unit, e.g., for optical imaging. A semiconductor element has plurality of conductive features exposed at the front surface and semiconductive or conductive material exposed at at least one of the front and rear surfaces. At least some of the conductive features are insulated from the exposed semiconductive or conductive material. By electrodeposition, an insulative layer is formed to overlie the at least one of exposed semiconductive material or conductive material. Subsequently, a plurality of conductive contacts and a plurality of conductive traces are formed overlying the electrodeposited insulative layer, the conductive traces connecting the conductive features to the conductive contacts on the rear surface. The unit can be incorporated in a camera module having an optical element in registration with an imaging area of the semiconductor element.
摘要:
A method is provided for fabricating a unit including a semiconductor element such as a sensor unit, e.g., for optical imaging. A semiconductor element has plurality of conductive features exposed at the front surface and semiconductive or conductive material exposed at at least one of the front and rear surfaces. At least some of the conductive features are insulated from the exposed semiconductive or conductive material. By electrodeposition, an insulative layer is formed to overlie the at least one of exposed semiconductive material or conductive material. Subsequently, a plurality of conductive contacts and a plurality of conductive traces are formed overlying the electrodeposited insulative layer, the conductive traces connecting the conductive features to the conductive contacts on the rear surface. The unit can be incorporated in a camera module having an optical element in registration with an imaging area of the semiconductor element.
摘要:
The present invention provides optical imaging apparatus comprising solid state sensing elements and optical components operable to be manufactured and assembled at the wafer level.
摘要:
The present invention provides optical imaging apparatus comprising solid state sensing elements and optical components operable to be manufactured and assembled at the wafer level.