摘要:
The present invention relates generally to a new metal/magnetic-ceramic laminate with through-holes and process thereof. More particularly, the invention encompasses a new process for fabrication of a large area ceramic laminate magnet with a significant number of holes, integrated metal plate(s) and co-sintered electrodes for electron and electron beam control. The present invention also relates to a magnetic matrix display (MMD), and electron beam source, and methods of manufacture thereof.
摘要:
The present invention relates generally to a new dielectric forming metal/ceramic laminate magnet and process thereof. More particularly, the invention encompasses a new process for fabrication of a large area laminate magnet with a significant number of holes, integrated dielectric forming metal plate(s) and electrodes for electron and electron beam control. The present invention also relates to a magnetic matrix display and electron beam source and methods of manufacture thereof.
摘要:
The present invention relates generally to a new metal/ceramic laminate magnet and process thereof. More particularly, the invention encompasses a new process for fabrication of a large area laminate magnet with a significant number of holes, integrated metal plate(s) and electrodes for electron and electron beam control. The present invention also relates to a magnetic matrix display and electron beam source and methods of manufacture thereof.
摘要:
The present invention relates generally to a new dielectric forming metal/ceramic laminate magnet and process thereof. More particularly, the invention encompasses a new process for fabrication of a large area laminate magnet with a significant number of holes, integrated dielectric forming metal plate(s) and electrodes for electron and electron beam control. The present invention also relates to a magnetic matrix display and electron beam source and methods of manufacture thereof.
摘要:
A novel metal filled via composition for use with ceramics. The via composition can be formulated to have a volume shrinkage approximating that of the ceramic material, and thus overcomes the problem of volume shrinkage mismatch between the via (particularly copper filled via) and ceramic upon sintering. The novel via composition exhibits enhanced adhesion to the ceramic. A sintering process by which shrinkage of the novel via composition is controlled and adhesion is improved is also disclosed.
摘要:
A novel metal filled via composition for use with ceramics. The via composition can be formulated to have a volume shrinkage approximating that of the ceramic material, and thus overcomes the problem of volume shrinkage mismatch between the via (particularly copper filled via) and ceramic upon sintering. The novel via composition exhibits enhanced adhesion to the ceramic. A sintering process by which shrinkage of the novel via composition is controlled and adhesion is improved is also disclosed.
摘要:
A large ceramic substrate article for electronic applications including at least one layer of sintered ceramic material, the layer including a plurality of greensheet segments of ceramic material joined edge to edge. Also disclosed is a method of fabricating a large ceramic greensheet article as well as a large ceramic substrate article.
摘要:
A large ceramic substrate article for electronic applications including at least one layer of sintered ceramic material, the layer including a plurality of greensheet segments of ceramic material joined edge to edge. Also disclosed is a method of fabricating a large ceramic greensheet article as well as a large ceramic substrate article.
摘要:
The present invention discloses at least one source metal that is embedded in at least one inert material to form a stand-alone structure and process thereof. It is preferred that the source metal is nickel or alloy thereof, and the inert material is at least one ceramic.
摘要:
A co-sintered ceramic substrate structure is formed through punching and screening of a plurality of ceramic green sheets with a plurality of composite metal pastes and/or inks and laminating the structure. The co-sintered surface metallization comprises dual screened composite metal pastes, one on top of the other and bonded to the sintered ceramic substrate to provide bonding of the surface metallization to the sintered ceramic substrate.