摘要:
The present invention relates generally to a new metal/magnetic-ceramic laminate with through-holes and process thereof. More particularly, the invention encompasses a new process for fabrication of a large area ceramic laminate magnet with a significant number of holes, integrated metal plate(s) and co-sintered electrodes for electron and electron beam control. The present invention also relates to a magnetic matrix display (MMD), and electron beam source, and methods of manufacture thereof.
摘要:
A sintering process is described using a glass-ceramic slurry containing an alloy powder or flakes selected from a group of alloys consisting of:______________________________________ Fe--Cr Cu--Ti Fe--Cr--Ni Ag--Ti Cr--Al Nb--Al Ni--Cr Cu--Al Ni--Al Cu--Al--Cr Fe--Al ______________________________________ The slurry is molded and later is sintered in a steam atmosphere at a temperature of about 1000.degree. C. to yield a glass-ceramic substrate toughened against crack propagation and useful in the packaging of semi-conductor device chips.
摘要:
The present invention relates generally to a new dielectric forming metal/ceramic laminate magnet and process thereof. More particularly, the invention encompasses a new process for fabrication of a large area laminate magnet with a significant number of holes, integrated dielectric forming metal plate(s) and electrodes for electron and electron beam control. The present invention also relates to a magnetic matrix display and electron beam source and methods of manufacture thereof.
摘要:
The present invention relates generally to a new dielectric forming metal/ceramic laminate magnet and process thereof. More particularly, the invention encompasses a new process for fabrication of a large area laminate magnet with a significant number of holes, integrated dielectric forming metal plate(s) and electrodes for electron and electron beam control. The present invention also relates to a magnetic matrix display and electron beam source and methods of manufacture thereof.
摘要:
The present invention relates generally to a new metal/ceramic laminate magnet and process thereof. More particularly, the invention encompasses a new process for fabrication of a large area laminate magnet with a significant number of holes, integrated metal plate(s) and electrodes for electron and electron beam control. The present invention also relates to a magnetic matrix display and electron beam source and methods of manufacture thereof.
摘要:
The cracking experienced during thermal cycling of metal:dielectric semiconductor packages results from a mismatch in thermal co-efficients of expansion. The non-hermeticity associated with such cracking can be addressed by backfilling the permeable cracks with a flexible material. Uniform gaps between the metal and dielectric materials can similarly be filled with flexible materials to provide stress relief, bulk compressibility and strength to the package. Furthermore, a permeable, skeletal dielectric can be fabricated as a fired, multilayer structure having sintered metallurgy and subsequently infused with a flexible, temperature-stable material to provide hermeticity and strength.
摘要:
The cracking experienced during thermal cycling of metal:dielectric semiconductor packages results from a mismatch in thermal co-efficients of expansion. The non-hermeticity associated with such cracking can be addresssed by backfilling the permeable cracks with a flexible material. Uniform gaps between the metal and dielectric materials can similarly be filled with flexible materials to provide stress relief, bulk compressibility and strength to the package. Furthermore, a permeable, skeletal dielectric can be fabricated as a fired, multilayer structure having sintered metallurgy and subsequently infused with a flexible, temperature-stable material to provide hermeticity and strength.
摘要:
The cracking experienced during thermal cycling of metal:dielectric semiconductor packages results from a mismatch in thermal co-efficients of expansion. The non-hermeticity associated with such cracking can be addressed by backfilling the permeable cracks with a flexible material. Uniform gaps between the metal and dielectric materials can similarly be filled with flexible materials to provide stress relief, bulk compressibility and strength to the package. Furthermore, a permeable, skeletal dielectric can be fabricated as a fired, multilayer structure having sintered metallurgy and subsequently infused with a flexible, temperature-stable material to provide hermeticity and strength.
摘要:
A novel metal filled via composition for use with ceramics. The via composition can be formulated to have a volume shrinkage approximating that of the ceramic material, and thus overcomes the problem of volume shrinkage mismatch between the via (particularly copper filled via) and ceramic upon sintering. The novel via composition exhibits enhanced adhesion to the ceramic. A sintering process by which shrinkage of the novel via composition is controlled and adhesion is improved is also disclosed.
摘要:
A novel metal filled via composition for use with ceramics. The via composition can be formulated to have a volume shrinkage approximating that of the ceramic material, and thus overcomes the problem of volume shrinkage mismatch between the via (particularly copper filled via) and ceramic upon sintering. The novel via composition exhibits enhanced adhesion to the ceramic. A sintering process by which shrinkage of the novel via composition is controlled and adhesion is improved is also disclosed.