摘要:
The invention described in this disclosure involves a new composition of matter, amyloid beta-derived dementing ligands (ADDL's). ADDLs consist of amyloid β peptide assembled into soluble globular non-fibrillar oligomeric structures that are capable of activating specific cellular processes. The invention further encompasses methods for assaying the formation, presence, receptor protein binding and cellular activities of ADDLs. The invention further encompasses assay methods and inhibitor molecules for cellular signaling molecules activated by ADDLs. Also described are molecules that block proteins that promote the formation of ADDLs.
摘要:
The invention described in this disclosure involves a new composition of matter, amyloid beta-derived dementing ligands (ADDL's). ADDLs consist of amyloid &bgr; peptide assembled into soluble globular non-fibrillar oligomeric structures that are capable of activating specific cellular processes. The invention further encompasses methods for assaying the formation, presence, receptor protein binding and cellular activities of ADDLs. The invention further encompasses assay methods and inhibitor molecules for cellular signaling molecules activated by ADDLs. Also described are molecules that block proteins that promote the formation of ADDLs.
摘要:
The invention herein comprises antibodies that bind to amyloid beta-derived diffusible ligands (ADDLs). ADDLs comprise amyloid β protein assembled into soluble, globular, non-fibrillar, oligomeric structures capable of activating specific cellular processes.
摘要:
The invention herein comprises amyloid beta-derived diffusible ligands (ADDLs), compositions comprising ADDLs, ADDL-surrogates, ADDL-binding molecules, and methods of using any of the foregoing compounds and compositions. ADDLs comprise amyloid β protein assembled into soluble, globular, non-fibrillar, oligomeric structures capable of activating specific cellular processes. The invention also comprises methods of generating ADDL-specific antibodies and methods of using ADDL-specific antibodies for assaying the formation, presence, receptor protein binding and cellular activity of ADDLs, as well as using such antibodies to detect compounds that block the formation or activity of ADDLs, and methods of identifying such compounds. The invention further provides methods of using ADDL-specific antibodies in modulating ADDL formation and/or activity, inter alia in the treatment of learning and/or memory disorders.
摘要:
Disclosed herein are antibodies that bind with high specificity to soluble oligomers of amyloid β (Abeta) and methods of employing those antibodies. The antibodies are able to distinguish between Alzheimer's Disease (AD) and control human brain extracts. The antibodies identify endogenous Abeta oligomers in AD brain slices and also bind to Abeta oligomers on cultured hippocampal cells. The antibodies neutralize endogenous Abeta oligomers and Abeta oligomers produced in solution.
摘要:
Disclosed and claimed herein are compositions comprising ADDL receptors, related compositions, and related methods. ADDL receptors are typically, but perhaps not exclusively, localized at the post-synaptic density (PSD) of neuronal cells. Related compositions include, but are not limited to, compounds that affect, positively or negatively, ADDL binding to neuronal cells, either via one or more receptors localized at the post-synaptic density (PSD) or otherwise. Related methods include, but are not limited to, procedures to screen for compounds that affect, either positively or negatively, ADDL binding to neuronal cells, either via one or more receptors localized at the post-synaptic density (PSD) or otherwise. Other related methods include, but are not limited to, prevention and treatment of ADDL-related diseases, such as Alzheimer's disease, mild cognitive impairment, Down's syndrome, and the like, using compositions that inhibit, block, or otherwise interfere with ADDL binding to one or more receptors localized at the post-synaptic density of neuronal cells.
摘要:
The present invention relates to methods for enhancing the cellular uptake and clearance of soluble oligomeric Aβ peptide assemblies from the environment surrounding both neuronal and non-neuronal cells. Oligomeric Aβ peptide assembly uptake and clearance is achieved via an agent that enhances insulin receptor signaling. Such ADDL uptake enhancers represent effective anti-ADDL therapeutics for use in the therapeutic treatment and/or prophylactic treatment of diseases including Alzheimer's disease, Down's syndrome, and the like, in which compromised nerve cell function is linked to the formation and/or the activity of soluble oligomeric Aβ peptide assemblies, also known as ADDLs, and ADDL-related assemblies.
摘要:
Disclosed are methods of enhancing cognitive impairment in a patient wherein the cognitive impairment is due to ADDL neurotoxicity. The methods employ non-peptidic compounds having a molecular weight of less than 1000 and which can antagonize against formation of neurotoxic ADDLs from Aβ1-42 monomers.
摘要:
Disclosed are methods of inhibiting, regulating, and/or modulating the formation of soluble, globular, non-fibrillar, neurotoxic amyloid β1-42 oligomers from amyloid β1-42 monomers using acylhydrazide compounds. Also disclosed are methods of treating a patient suffering from diseases associated with the formation of soluble, globular, non-fibrillar, neurotoxic amyloid β1-42 oligomers using acylhydrazide compounds.
摘要:
This invention relates to genetically engineered enzymes, their ligand conjugates, their manufacture, and their use in qualitative or quantitative assays. A hybrid enzyme, such as an AP-epitope, has a foreign amino acid moiety (an epitope) inserted near the active site of the starting AP enzyme. The foreign amino acid moiety binds with an analyte, and, as a consequence of this binding, the enzymatic activity of the hybrid enzyme, AP-epitope, is modified. The changes in the enzymatic activity are dependent upon the presence, or the amount, of the analyte. In another embodiment, the hybrid enzyme consists of a cysteine introduced near the active site of an AP to give a hybrid enzyme. The cysteine on the hybrid enzyme serves as a point of conjugation of a ligand, such as theophylline, ferritin, thyroxine, or digoxigenin, to form the hybrid enzyme-ligand conjugate. The ligand binds with an antibody, an analyte or a binding molecule to an analyte and as a result of this binding, the enzymatic activity of the hybrid enzyme-ligand conjugate is modified or modulated.