摘要:
A method of reducing white bump formation and dielectric cracking under controlled collapse chip connections (C4s). The method comprises fabricating a substrate having a plurality of metallization layers, one or more of the layers is of low k dielectric material. The substrate includes a plurality of attachment pads for the C4s. The fabricating comprises selectively forming at least a portion of the substrate with metal fill having a higher Young's modulus of elasticity than any of the one or more layers of low k dielectric material in portions of the substrate located beneath at least some of the attachment pads.
摘要:
A method of reducing white bump formation and dielectric cracking under controlled collapse chip connections (C4s). The method comprises fabricating a substrate having a plurality of metallization layers, one or more of the layers is of low k dielectric material. The substrate includes a plurality of attachment pads for the C4s. The fabricating comprises selectively forming at least a portion of the substrate with metal fill having a higher Young's modulus of elasticity than any of the one or more layers of low k dielectric material in portions of the substrate located beneath at least some of the attachment pads.
摘要:
A dielectric cap and related methods are disclosed. In one embodiment, the dielectric cap includes a dielectric material having an optical band gap (e.g. greater than about 3.0 electron-Volts) to substantially block ultraviolet radiation during a curing treatment, and including nitrogen with electron donor, double bond electrons. The dielectric cap exhibits a high modulus and is stable under post ULK UV curing treatments for, for example: copper low k back-end-of-line (BEOL) nanoelectronic devices, leading to less film and device cracking and improved reliability,
摘要:
The present invention relates to a process for preparing a robust crack-absorbing integrated circuit chip comprising a crack trapping structure containing two metal plates and a via-bar structure sandwiched between said plates.
摘要:
The present invention relates to a process for preparing a robust crack-absorbing integrated circuit chip comprising a crack trapping structure containing two metal plates and a via-bar structure sandwiched between said plates.
摘要:
A method of annealing a semiconductor and a semiconductor. The method of annealing including heating the semiconductor to a first temperature for a first period of time sufficient to remove physically-adsorbed water from the semiconductor and heating the semiconductor to a second temperature, the second temperature being greater than the first temperature, for a period of time sufficient to remove chemically-adsorbed water from the semiconductor. A semiconductor device including a plurality of metal conductors, and a dielectric including regions separating the plurality of metal conductors, the regions including an upper interface and a lower bulk region, the upper interface having a density greater than a density of the lower bulk region.
摘要:
A method of annealing a semiconductor and a semiconductor. The method of annealing including heating the semiconductor to a first temperature for a first period of time sufficient to remove physically-adsorbed water from the semiconductor and heating the semiconductor to a second temperature, the second temperature being greater than the first temperature, for a period of time sufficient to remove chemically-adsorbed water from the semiconductor. A semiconductor device including a plurality of metal conductors, and a dielectric including regions separating the plurality of metal conductors, the regions including an upper interface and a lower bulk region, the upper interface having a density greater than a density of the lower bulk region.
摘要:
A chip is provided which includes a back-end-of-line (“BEOL”) interconnect structure. The BEOL interconnect structure includes a plurality of interlevel dielectric (“ILD”) layers which include a dielectric material curable by ultraviolet (“UV”) radiation. A plurality of metal interconnect wiring layers are embedded in the plurality of ILD layers. Dielectric barrier layers cover the plurality of metal interconnect wiring layers, the dielectric barrier layers being adapted to reduce diffusion of materials between the metal interconnect wiring layers and the ILD layers. One of more of the dielectric barrier layers is adapted to retain compressive stress while withstanding UV radiation sufficient to cure the dielectric material of the ILD layers, making the BEOL structure better capable of avoiding deformation due to thermal and/or mechanical stress.
摘要:
A chip is provided which includes a back-end-of-line (“BEOL”) interconnect structure. The BEOL interconnect structure includes a plurality of interlevel dielectric (“ILD”) layers which include a dielectric material curable by ultraviolet (“UV”) radiation. A plurality of metal interconnect wiring layers are embedded in the plurality of ILD layers. Dielectric barrier layers cover the plurality of metal interconnect wiring layers, the dielectric barrier layers being adapted to reduce diffusion of materials between the metal interconnect wiring layers and the ILD layers. One of more of the dielectric barrier layers is adapted to retain compressive stress while withstanding UV radiation sufficient to cure the dielectric material of the ILD layers, making the BEOL structure better capable of avoiding deformation due to thermal and/or mechanical stress.
摘要:
Structure providing more reliable fuse blow location, and method of making the same. A vertical metal fuse blow structure has, prior to fuse blow, an intentionally damaged portion of the fuse conductor. The damaged portion helps the fuse blow in a known location, thereby decreasing the resistance variability in post-blow circuits. At the same time, prior to fuse blow, the fuse structure is able to operate normally. The damaged portion of the fuse conductor is made by forming an opening in a cap layer above a portion of the fuse conductor, and etching the fuse conductor. Preferably, the opening is aligned such that the damaged portion is on the top corner of the fuse conductor. A cavity can be formed in the insulator adjacent to the damaged fuse conductor. The damaged fuse structure having a cavity can be easily incorporated in a process of making integrated circuits having air gaps.