摘要:
A method of forming a thin film transistor relative to a substrate includes, a) providing a thin film transistor layer of polycrystalline material on a substrate, the polycrystalline material comprising grain boundaries; b) providing a fluorine containing layer adjacent the polycrystalline thin film layer; c) annealing the fluorine containing layer at a temperature and for a time period which in combination are effective to drive fluorine from the fluorine containing layer into the polycrystalline thin film layer and incorporate fluorine within the grain boundaries to passivate said grain boundaries; and d) providing a transistor gate operatively adjacent the thin film transistor layer. The thin film transistor can be fabricated to be bottom gated or top gated. A buffering layer can be provided intermediate the thin film transistor layer and the fluorine containing layer, with the buffering layer being transmissive of fluorine from the fluorine containing layer during the annealing. Preferably, the annealing temperature is both sufficiently high to drive fluorine from the fluorine containing layer into the polycrystalline thin film layer and incorporate fluorine within the grain boundaries to passivate said grain boundaries, but sufficiently low to prevent chemical reaction of the fluorine containing layer with the polycrystalline thin film layer.
摘要:
A method of forming a thin film transistor relative to a substrate includes, a) providing a thin film transistor layer of polycrystalline material on a substrate, the polycrystalline material comprising grain boundaries; b) providing a fluorine containing layer adjacent the polycrystalline thin film layer; c) annealing the fluorine containing layer at a temperature and for a time period which in combination are effective to drive fluorine from the fluorine containing layer into the polycrystalline thin film layer and incorporate fluorine within the grain boundaries to passivate said grain boundaries; and d) providing a transistor gate operatively adjacent the thin film transistor layer. The thin film transistor can be fabricated to be bottom gated or top gated. A buffering layer can be provided intermediate the thin film transistor layer and the fluorine containing layer, with the buffering layer being transmissive of fluorine from the fluorine containing layer during the annealing. Preferably, the annealing temperature is both sufficiently high to drive fluorine from the fluorine containing layer into the polycrystalline thin film layer and incorporate fluorine within the grain boundaries to passivate said grain boundaries, but sufficiently low to prevent chemical reaction of the fluorine containing layer with the polycrystalline thin film layer.
摘要:
A high storage capacity capacitor for a semiconductor structure includes a barrier layer formed on a polysilicon electrode, a lower electrode, a dielectric layer, and an upper electrode. The dielectric material is formed of a high dielectric constant material such as BaSrTiO.sub.3. In order to protect the barrier layer from oxidation during deposition of the dielectric layer and to provide a smooth surface geometry for depositing the dielectric layer, conducting or insulating spacers are formed on the sidewalls of the barrier layer and lower electrode. A smooth dielectric layer can thus be formed that is less susceptible to current leakage. In addition, the insulating spacers can be formed to completely fill a space between adjacent capacitors and to provide a completely planar surface.
摘要:
A storage cell capacitor and a method for forming the storage cell capacitor having a storage node electrode including a barrier layer interposed between a conductive plug and an oxidation resistant layer. A layer of titanium silicide is fabricated to lie between the conductive plug and the oxidation resistant layer. An insulative layer protects the sidewalls of the barrier layer during the deposition and anneal of a dielectric layer having a high dielectric constant.
摘要:
Processes are disclosed which facilitate improved high-density memory circuitry, most preferably dynamic random access memory (DRAM) circuitry. A semiconductor memory device includes i) a total of no more than 68,000,000 functional and operably addressable memory cells arranged in multiple memory arrays formed on a semiconductor die; and ii) circuitry formed on the semiconductor die permitting data to be written to and read from one or more of the memory cells. At least one of the memory arrays contains at least 100-square microns of continuous die surface area having at least 128 of the functional and operably addressable memory cells. More preferably, at least 100 square microns of continuous die surface area have at least 170 of the functional and operably addressable memory cells.
摘要:
There are many inventions described and illustrated herein. In a first aspect, the present invention is directed to integrated circuit device including SOI logic transistors and SOI memory transistors, and method for fabricating such a device. In one embodiment, integrated circuit device includes memory portion having, for example, PD or FD SOI memory cells, and logic portion having, for example, high performance transistors, such as Fin-FET, multiple gate transistors, and/or non-high performance transistors (such as single gate transistors that do not possess the performance characteristics of the high performance transistors). In another aspect, the present invention is directed to a method of manufacture of such integrated circuit device.
摘要:
Embodiments of a manufacturing process flow for producing standalone memory devices that can achieve bit cell sizes on the order of 4F2 or 5F2, and that can be applied to common source/drain, separate source/drain, or common source only or common drain only transistor arrays. Active area and word line patterns are formed as perpendicularly-arranged straight lines on a Silicon-on-Insulator substrate. The intersections of the active area and spaces between word lines define contact areas for the connection of vias and metal line layers. Insulative spacers are used to provide an etch mask pattern that allows the selective etching of contact areas as a series of linear trenches, thus facilitating straight line lithography techniques. Embodiments of the manufacturing process remove first layer metal (metal-1) islands and form elongated vias, in a succession of processing steps to build dense memory arrays.
摘要:
There are many inventions described and illustrated herein. In a first aspect, the present invention is directed to integrated circuit device including SOI logic transistors and SOI memory transistors, and method for fabricating such a device. In one embodiment, integrated circuit device includes memory portion having, for example, PD or FD SOI memory cells, and logic portion having, for example, high performance transistors, such as Fin-FET, multiple gate transistors, and/or non-high performance transistors (such as single gate transistors that do not possess the performance characteristics of the high performance transistors). In another aspect, the present invention is directed to a method of manufacture of such integrated circuit device.
摘要:
There are many inventions described and illustrated herein. In one aspect, the present invention is directed to a memory cell, architecture, and/or array and/or technique of writing or programming data into the memory cell (for example, a technique to write or program a logic low or State “0” in a memory cell employing an electrically floating body transistor. In this regard, the present invention programs a logic low or State “0” in the memory cell while the electrically floating body transistor is in the “OFF” state or substantially “OFF” state (for example, when the device has no (or practically no) channel and/or channel current between the source and drain). In this way, the memory cell may be programmed whereby there is little to no current/power consumption by the electrically floating body transistor and/or from memory array having a plurality of electrically floating body transistors.
摘要:
A multi-component layer is deposited on a semiconductor substrate in a semiconductor process. The multi-component layer may be a dielectric layer formed from a gaseous titanium organometallic precursor, reactive silane-based gas and a gaseous oxidant. The multi-component layer may be deposited in a cold wall or hot wall chemical vapor deposition (CVD) reactor, and in the presence or absence of plasma. The multi-component layer may also be deposited using other processes, such as radiant energy or rapid thermal CVD.