摘要:
A production method for a glassy liquid-crystalline epoxy resin, comprising a process of cooling a liquid-crystalline epoxy resin to cause transition into a glassy state.
摘要:
There is provided a production method for an optical semiconductor device including a substrate having a silver plating layer formed on a surface and a light emitting diode bonded to the silver plating layer. The production method includes a film formation step of forming a clay film covering the silver plating layer and a connection step of electrically connecting the light emitting diode and the silver plating layer covered with the clay film by wire bonding, after the film formation step.
摘要:
The silver surface treatment agent of the present invention contains a layered silicate compound. The light-emitting device of the present invention comprises a substrate having a silver-plated layer; a light-emitting diode mounted on the substrate; and a film, provided on a surface of the silver-plated layer, containing a layered silicate compound.
摘要:
A cured epoxy resin, which is a cured product of an epoxy compound having a mesogenic structure and a curing agent having a molecular chain or a flexible backbone with a molecular weight of 100 or more, the cured epoxy resin having a smectic structure; a cured epoxy resin, which is a cured product of an epoxy compound having a mesogenic structure and a curing agent having a molecular chain or a flexible backbone with a molecular weight of 100 or more, the cured epoxy resin not having a smectic structure; an epoxy resin composition, comprising an epoxy compound having a mesogenic structure and a curing agent having a molecular chain with a molecular weight of 100 or more; and an epoxy resin composition, comprising an epoxy compound having a mesogenic structure and a curing agent having a flexible backbone with a molecular weight of 100 or more.
摘要:
An epoxy resin, comprising an epoxy compound having a mesogen structure, wherein, when performing a process of decreasing a temperature of the epoxy resin from 150° C. to 30° C. at a rate of 2° C./min, and a process of increasing the temperature of the epoxy resin from 30° C. to 150° C. at a rate of 2° C./min, in this order, the epoxy resin has a maximum value of η′2/η′1 of 20 or less within a temperature range of from 30° C. to 150° C., wherein η′1 is a dynamic shear viscosity (Pa·s) measured in the process of decreasing the temperature, and η′2 is a dynamic shear viscosity (Pa·s) measured in the process of increasing the temperature, η′1 and η′2 being measured at the same temperature, and a value η′2 measured at 100° C. is 1000 Pa·s or less.
摘要:
The present invention provides a separation material comprising porous polymer particles that comprise a styrene-based monomer as a monomer unit; and a coating layer that comprises a macromolecule having hydroxyl groups and covers at least a portion of the surface of the porous polymer particles, wherein the rupture strength is 10 mN or higher.
摘要:
An optical semiconductor device includes a substrate that has a silver plating layer formed on a surface, a light emitting diode that is bonded to the silver plating layer, a light reflecting portion that surrounds the light emitting diode, a transparent sealing portion that is filled into the light reflecting portion and seals the light emitting diode, and a clay film that covers the silver plating layer. The transparent sealing portion and the light reflecting portion are bonded to each other.
摘要:
There is provided a production method for an optical semiconductor device including a substrate having a silver plating layer formed on a surface and a light emitting diode bonded to the silver plating layer. The production method includes a film formation step of forming a clay film covering the silver plating layer and a connection step of electrically connecting the light emitting diode and the silver plating layer covered with the clay film by wire bonding, after the film formation step.
摘要:
An optical semiconductor device includes a substrate that has a silver plating layer formed on a surface, a light emitting diode that is bonded to the silver plating layer, a light reflecting portion that surrounds the light emitting diode, a transparent sealing portion that is filled into the light reflecting portion and seals the light emitting diode, and a clay film that covers the silver plating layer. The transparent sealing portion and the light reflecting portion are bonded to each other.