摘要:
A method for producing a nitride semiconductor comprising growing at least first to third nitride semiconductor layers on a substrate; said first nitride semiconductor layer being grown at 400–600° C.; and said second and third nitride semiconductor layers being grown on said first nitride semiconductor layer at 700–1,300° C. after heat-treating said first nitride semiconductor layer at 700–1,300° C.; used as a carrier gas supplied near said substrate together with a starting material gas being a hydrogen/nitrogen mixture gas containing 63% or more by volume of hydrogen during growing said second nitride semiconductor layer, and a hydrogen/nitrogen mixture gas containing 50% or more by volume of nitrogen during growing said third nitride semiconductor layer; and said second nitride semiconductor layer being formed to a thickness of more than 1 μm.
摘要:
A method for producing a nitride semiconductor comprising growing at least first to third nitride semiconductor layers on a substrate; said first nitride semiconductor layer being grown at 400-600° C.; and said second and third nitride semiconductor layers being grown on said first nitride semiconductor layer at 700-1,300° C. after heat-treating said first nitride semiconductor layer at 700-1,300° C.; used as a carrier gas supplied near said substrate together with a starting material gas being a hydrogen/nitrogen mixture gas containing 63% or more by volume of hydrogen during growing said second nitride semiconductor layer, and a hydrogen/nitrogen mixture gas containing 50% or more by volume of nitrogen during growing said third nitride semiconductor layer; and said second nitride semiconductor layer being formed to a thickness of more than 1 μm.
摘要:
A method for producing a nitride semiconductor crystal comprising steps (a), (b) and (c), which steps follow in sequence as follows: a step (a) for forming fine crystal particles made of a nitride semiconductor on a substrate; a step (b) for forming a nitride semiconductor island structure having a plurality of facets inclined relative to a surface of the substrate using the fine crystal particles as nuclei; and a step (c) for causing the nitride semiconductor island structure to grow in a direction parallel with a surface of the substrate to merge a plurality of the nitride semiconductor island structures with each other, thereby forming a nitride semiconductor crystal layer having a flat surface; the steps (a)-(c) being continuously conducted in the same growing apparatus.
摘要:
A nitride semiconductor free-standing substrate includes a surface inclined in a range of 0.03° to 1.0° from a C-plane, and an off-orientation that an angle defined between a C-axis and a tangent at each point on a whole surface of the substrate becomes maximum is displaced in a range of 0.5° to 16° from a particular M-axis orientation of six-fold symmetry M-axis orientations. The substrate does not include a region of −0.5°
摘要:
A nitride semiconductor free-standing substrate includes a diameter of not less than 40 mm, a thickness of not less than 100 μm, a dislocation density of not more than 5×106/cm2, an impurity concentration of not more than 4×1019/cm3, and a nanoindentation hardness of not less than 19.0 GPa at a maximum load in a range of not less than 1 mN and not more than 50 mN.
摘要翻译:氮化物半导体自支撑衬底包括直径不小于40mm,厚度不小于100μm,位错密度不大于5×10 6 / cm 2,杂质浓度不大于4×1019 / cm3,纳米压痕硬度在不小于1mN且不大于50mN的范围内的最大负载下不小于19.0GPa。
摘要:
A nitride semiconductor crystal producing method, a nitride semiconductor epitaxial wafer, and a nitride semiconductor freestanding substrate, by which it is possible to suppress the occurrence of cracking in the nitride semiconductor crystal and to ensure the enhancement of the yield of the nitride semiconductor crystal. The nitride semiconductor crystal producing method includes growing a nitride semiconductor crystal over a seed crystal substrate, while applying an etching action to an outer end of the seed crystal substrate during the growing of the nitride semiconductor crystal.
摘要:
There is provided a method for manufacturing a nitride semiconductor substrate, comprising: etching and flattening a surface of a nitride semiconductor substrate disposed facing a surface plate, by using the surface plate having a surface composed of any one of Ni, Ti, Cr, W, and Mo or nitride of any one of them, disposing the surface of the surface plate and a flattening surface of a nitride semiconductor substrate proximately so as to be faced each other, and supplying gas containing at least hydrogen and ammonia between the surface of the surface plate and the surface of the nitride semiconductor substrate, wherein the surface plate and the nitride semiconductor substrate facing each other are set in a high temperature state of 900° C. or more.
摘要:
A nitride semiconductor crystal producing method, a nitride semiconductor epitaxial wafer, and a nitride semiconductor freestanding substrate, by which it is possible to suppress the occurrence of cracking in the nitride semiconductor crystal and to ensure the enhancement of the yield of the nitride semiconductor crystal. The nitride semiconductor crystal producing method includes growing a nitride semiconductor crystal over a seed crystal substrate, while applying an etching action to an outer end of the seed crystal substrate during the growing of the nitride semiconductor crystal.
摘要:
A group III nitride semiconductor free-standing substrate includes an as-grown surface, more than half of a region of the as-grown surface including a single crystal plane. The single crystal plane includes an off-angle inclined in an m-axis or a-axis direction from a C-plane with a group III polarity, or in a c-axis or a-axis direction from an M-plane.
摘要:
A n-type layer, a multiquantum well active layer comprising a plurality of pairs of an InGaN well layer/InGaN barrier layer, and a p-type layer are laminated on a substrate to provide a nitride semiconductor light emitting element. A composition of the InGaN barrier included in the multiquantum well active layer is expressed by InxGa1-xN (0.04≦x≦0.1), and a total thickness of InGaN layers comprising an In composition ratio within a range of 0.04 to 0.1 in the light emitting element including the InGaN barrier layers is not greater than 60 nm.
摘要翻译:包括多对InGaN阱层/ InGaN阻挡层和p型层的n型层,多量子阱有源层层叠在基板上,以提供氮化物半导体发光元件。 包括在多量子阱有源层中的InGaN势垒的组成由In x Ga 1-x N(0.04 <= x <= 0.1)表示,并且总共 在包含InGaN势垒层的发光元件中,In组成比在0.04〜0.1的范围内的InGaN层的厚度不大于60nm。