摘要:
A memory circuit according to an embodiment includes: a first transistor including a first source/drain electrode, a second source/drain electrode, and a first gate electrode; a second transistor including a third source/drain electrode connected to the second source/drain electrode, a fourth source/drain electrode, and a second gate electrode; a third transistor and a fourth transistor forming an inverter circuit, the third transistor including a fifth source/drain electrode, a sixth source/drain electrode, and a third gate electrode connected to the second source/drain electrode, the fourth transistor including a seventh source/drain electrode connected to the sixth source/drain electrode, an eighth source/drain electrode, and a fourth gate electrode connected to the second source/drain electrode; and an output terminal connected to the sixth source/drain electrode. At least one of the third transistor and the fourth transistor is a spin MOSFET, and an output of the inverter circuit is sent from the output terminal.
摘要:
In one embodiment, a method for implementing a circuit design for an integrated circuit includes: (a) obtaining a first wiring to satisfy a given operating frequency; (b) calculating a maximum bypass wiring length based on the given operating frequency and a critical path of the first wiring; (c) obtaining a second wiring by bypassing the first wiring using wires other than wires of the first wiring in a first wiring group, wherein wiring of the integrated circuit is categorized into a plurality of wiring groups, and the first wiring is included in the first wiring group of the categorized wiring groups; and (d) replacing the first wiring with the second wiring, if a difference between the second wiring and the first wiring is not larger than the maximum bypass wiring length, and not replacing the first wiring if said difference is larger than the maximum bypass wiring length.
摘要:
In one embodiment, a method for implementing a circuit design for an integrated circuit includes: (a) obtaining a first wiring to satisfy a given operating frequency; (b) calculating a maximum bypass wiring length based on the given operating frequency and a critical path of the first wiring; (c) obtaining a second wiring by bypassing the first wiring using wires other than wires of the first wiring in a first wiring group, wherein wiring of the integrated circuit is categorized into a plurality of wiring groups, and the first wiring is included in the first wiring group of the categorized wiring groups; and (d) replacing the first wiring with the second wiring, if a difference between the second wiring and the first wiring is not larger than the maximum bypass wiring length, and not replacing the first wiring if said difference is larger than the maximum bypass wiring length.
摘要:
One embodiment provides a semiconductor integrated circuit, including: a substrate; a plurality of nonvolatile memory portions formed in the substrate, each including a first nonvolatile memory and a second nonvolatile memory; and a plurality of logic transistor portions formed in the substrate, each including at least one of logic transistor, wherein the logic transistors include: a first transistor which is directly connected to drains of the first and second nonvolatile memories at its gate; and a second transistor which is not directly connected to the drains of the first and second nonvolatile memories, and wherein a bottom surface of the gate of each of the logic transistors sandwiching the first and second nonvolatile memories is lower in height from a top surface of the substrate than a bottom surface of the control gate of each of the first and second nonvolatile memories.
摘要:
In one embodiment, a semiconductor integrated circuit has memory cells. Each of the memory cells has non-volatile memories and switching elements. The non-volatile memories and switching elements are connected in series between a first power source and a second power source. Output wirings of at least two of the memory cells are connected to each other. Input wirings are connected with control gates of the switching elements included in each of the at least two memory cells. A plurality of the switching elements included in one of the at least two of the memory cells is turned off, when an input signal or an inverted signal is inputted. Further, another plurality of the switching elements included in another one of the at least two of memory cells other than the one of the memory cells is turned on, when the input signal or the inverted signal is inputted.
摘要:
In one embodiment, a semiconductor integrated circuit has memory cells. Each of the memory cells has non-volatile memories and switching elements. The non-volatile memories and switching elements are connected in series between a first power source and a second power source. Output wirings of at least two of the memory cells are connected to each other. Input wirings are connected with control gates of the switching elements included in each of the at least two memory cells. A plurality of the switching elements included in one of the at least two of the memory cells is turned off, when an input signal or an inverted signal is inputted. Further, another plurality of the switching elements included in another one of the at least two of memory cells other than the one of the memory cells is turned on, when the input signal or the inverted signal is inputted.
摘要:
An inner portion of a filter cleaning portion 300 arranged at an inner portion of an interior unit is respectively arranged with cleaning units 300A, 300B constituted by arranging upper brushes 344a, 344b brought into contact with one face of an air filter and lower brushes 322a, 322b brought into contact with other face of the air filter 5 opposedly to each other at filter inlet/outlet 350a, 350b of the filter cleaning portion 300. Further, a longitudinal frame 54 and a transverse frame 55 of an air filter 5 having a filter sheet 51 in a shape of a meshed sheet for catching dust and a frame 52 for supporting the filter sheet 51 are formed on a rear face side (side of heat exchanger 3) of the filter sheet 51.
摘要:
One embodiment provides a look-up table circuit, including: 2i memories, a half of which constituting a first memory group, the other half of which constituting a second memory group; first to i-th input terminals to which first to i-th input signals are input, respectively; a first output terminal; a switch group that selectively connects one of the memories to the first output terminal according to the first to i-th input signals; a first power-off switch that shuts off power supply to the first memory group in response to one of the first to i-th input signals; and a second power-off switch that shuts off power supply to the second memory group in response to the one of the first to i-th input signals.
摘要:
An inner portion of a filter cleaning portion 300 arranged at an inner portion of an interior unit is respectively arranged with cleaning units 300A, 300B constituted by arranging upper brushes 344a, 344b brought into contact with one face of an air filter and lower brushes 322a, 322b brought into contact with other face of the air filter 5 opposedly to each other at filter inlet/outlet 350a, 350b of the filter cleaning portion 300. Further, a longitudinal frame 54 and a transverse frame 55 of an air filter 5 having a filter sheet 51 in a shape of a meshed sheet for catching dust and a frame 52 for supporting the filter sheet 51 are formed on a rear face side (side of heat exchanger 3) of the filter sheet 51.
摘要:
According to one embodiment, a configuration memory includes first and second data lines, a first memory string which comprises at least first and second nonvolatile memory transistors which are connected in series between a common node and the first data line, a second memory string which comprises at least third and fourth nonvolatile memory transistors which are connected in series between the common node and the second data line, and a flip-flop circuit which comprises a first data holding node connected to the common node and a second data holding node connected to a configuration data output node.