Abstract:
Provided is an insulated gate semiconductor device. In the device, source regions are provided in the entire operation area and a first back gate region is provided below the source region between trenches. Moreover, a second back gate region connected to the first back gate region is provided outside of the source regions. Thereafter, a first electrode layer coming into contact with the source regions is provided in the entire operation area, and a second electrode layer coming into contact with the second back gate regions is provided around the first electrode layer. Accordingly, potentials can be individually applied to the first electrode layer and the second electrode layer. Thus, it is possible to perform control for preventing reverse flow caused by a parasitic diode.
Abstract:
Formation and etching of an n type epitaxial layer and formation and etching of a p type epitaxial layer are alternately performed on the semiconductor substrate for at least three times to form all semiconductor layers, of the epitaxial layers. Thereby, impurity concentration profiles of the semiconductor layers can be uniform, and pn junctions can be formed vertically to a wafer surface. Furthermore, the semiconductor layers can each be formed with a narrow width, so that impurity concentrations thereof are increased. With this configuration, high breakdown voltage and low resistance can be achieved.
Abstract:
Provided is a semiconductor device in which an insulating region surrounding an element region is provided in an end portion of a semiconductor region with a super junction structure. Since a depletion layer in the element region ends in the insulating region, the end portion of the element region is not formed in a curved surface shape. In other words, the depletion layer has no curved surface in which internal electric fields are concentrated. For this reason, there is no need to take a measure to cause the depletion layer to spread in a horizontal direction by proving a terminal region. Since the terminal region is unnecessary, a chip size can be reduced. Alternatively, an area of the element region can be expanded.
Abstract:
An interlayer dielectric film is completely buried in a trench, and failures caused by step coverage is prevented because a source electrode can be formed substantially uniformly on an upper portion of a gate electrode. Also, in the processes of forming a source region, a body region and an interlayer dielectric film, only one mask is necessary so that the device size is reduced to account for placement error of only one mask alignment.
Abstract:
In a peripheral insulating film in a peripheral region, concave parts are provided. At least one of the concave parts is made to have an opening as a contact hole with an Al wiring layer, and a plurality of contact holes may be provided. Accordingly, frictions between the Al wiring layer and the peripheral insulating film are increased. Thus, occurrence of Al slide can be suppressed.
Abstract:
Conventional power MOSFETs enables prevention of an inversion in a surrounding region surrounding the outer periphery of an element region by a wide annular layer and a wide sealed metal. Since, resultantly, the area of the surrounding region is large, increase in the element region has been restrained. A semiconductor device is hereby provided which has an inversion prevention region containing an MIS (MOS) structure. The width of polysilicon for the inversion prevention region is large enough to prevent an inversion since the area of an oxide film can be increased by the depth of the trench. By this, leakage current can be reduced even though the area of the region surrounding the outer periphery of the element region is not enlarged. In addition, since the element region is enlarged, on-state resistance of the MOSFET can be reduced.
Abstract:
Channel regions continuous with transistor cells are disposed also below a gate pad electrode. The channel region below the gate pad electrode is fixed to a source potential. Thus, a predetermined reverse breakdown voltage between a drain and a source is secured without forming a p+ type impurity region below the entire lower surface of the gate pad electrode. Furthermore, a protection diode is formed in a conductive layer disposed at the outer periphery of an operation region.
Abstract:
By integrating a diode and a resistor connected in parallel into the same chip as an IGBT and connecting a cathode of the diode to a gate of the IGBT, the value of dv/dt can be limited to a predetermined range inside the chip of the IGBT without a deterioration in turn-on characteristics. Since the chip includes a resistor having such a resistance that a dv/dt breakdown of the IGBT can be prevented, the IGBT can be prevented from being broken by an increase in dv/dt at a site (user site) to which the chip is supplied.
Abstract:
Channel regions and gate electrodes are also disposed continuously with transistor cells below a gate pad electrode. The transistor cells are formed in a stripe pattern and allowed to contact a source electrode. In this way, the channel regions and the gate electrodes, which are positioned below the gate pad electrode, are kept at a predetermined potential. Thus, a predetermined drain-source reverse breakdown voltage can be secured without providing a p+ type impurity region on the entire surface below the gate pad electrode.
Abstract:
Conventional power MOSFETs enables prevention of an inversion in a surrounding region surrounding the outer periphery of an element region by a wide annular layer and a wide sealed metal. Since, resultantly, the area of the surrounding region is large, increase in the element region has been restrained. A semiconductor device is hereby provided which has an inversion prevention region containing an MIS (MOS) structure. The width of polysilicon for the inversion prevention region is large enough to prevent an inversion since the area of an oxide film can be increased by the depth of the trench. By this, leakage current can be reduced even though the area of the region surrounding the outer periphery of the element region is not enlarged. In addition, since the element region is enlarged, on-state resistance of the MOSFET can be reduced.