摘要:
Disclosed is an efficient method for production of aminopeptidase. The method comprises either transforming host bacteria with an aminopeptidase gene and with a neutral protease gene, or transforming some part of host bacteria with an aminopeptidase gene while transforming the other part of the host bacteria with a neutral protease gene, culturing in a medium the hose bacteria transformed with the aminopeptidase gene and with the neutral protease gene, or culturing a mixture of the host bacteria transformed with the aminopeptidase gene and the host bacteria transformed with the neutral protease gene, to let both the aminopeptidase and the neutral protease be expressed, and collecting the aminopeptidase thus produced from the culture mixture.
摘要:
Disclosed is an efficient method for production of aminopeptidase. The method comprises either transforming host bacteria with an aminopeptidase gene and with a neutral protease gene, or transforming some part of host bacteria with an aminopeptidase gene while transforming the other part of the host bacteria with a neutral protease gene, culturing in a medium the hose bacteria transformed with the aminopeptidase gene and with the neutral protease gene, or culturing a mixture of the host bacteria transformed with the aminopeptidase gene and the host bacteria transformed with the neutral protease gene, to let both the aminopeptidase and the neutral protease be expressed, and collecting the aminopeptidase thus produced from the culture mixture.
摘要:
This invention provides an apparatus for extracting nucleic acids from nucleic acid-containing samples, particularly biological samples, and more particularly to a nucleic acid extraction apparatus well suited for the nucleic acid extraction method utilizing a nucleic acid-binding magnetic carrier. The nucleic acid extraction apparatus of the invention comprises (1) a group of extraction vessels each comprising a reactor tube in which a sample, a reagent solution, and a magnetic carrier are admixed and reacted, a drain cup for pooling an unwanted component solution, and a nucleic acid recovery tube all as secured to a support, (2) a distribution means for introducing a solution into each of the extraction vessels, (3) a stirring means for mixing the solution and magnetic carrier in the reactor tube, (4) a holding means for holding the magnetic carrier stationary within the vessel, (5) a discharging means for discharging the solution from the reactor tube while the magnetic carrier is held stationary, (6) a heating means for heating the solution and magnetic carrier in the reactor tube, and (7) a transfer means for serially transferring the vessels to the given positions where the distribution means, stirring means, holding means, discharging means and heating means are respectively disposed.
摘要:
Disclosed is a method for production of recombinant human FSH in high yield and a high purity. The method comprises the steps of: (a) culturing recombinant human FSH-producing mammalian cells in a serum-free medium, (b) collecting culture supernatant, (c) subjecting the culture supernatant to cation-exchange column chromatography, (d) dye affinity column chromatography, (e) hydrophobic column chromatography, and (f) gel filtration column chromatography to collect recombinant human FSH-active fractions, in the order.
摘要:
Disclosed is a method for production of recombinant human FSH in high yield and a high purity. The method comprises the steps of: (a) culturing recombinant human FSH-producing mammalian cells in a serum-free medium, (b) collecting culture supernatant, (c) subjecting the culture supernatant to cation-exchange column chromatography, (d) dye affinity column chromatography, (e) hydrophobic column chromatography, and (f) gel filtration column chromatography to collect recombinant human FSH-active fractions, in the order.
摘要:
A nucleic acid-bondable magnetic carrier of the present invention is a magnetic silica particle comprising a superparamagnetic metal oxide, wherein the magnetic silica particle has a specific surface of about 100 to about 800 m2/g.
摘要:
A nucleic acid-bondable magnetic carrier of the present invention is a magnetic silica particle comprising a superparamagnetic metal oxide, wherein the magnetic silica particle has a specific surface of about 100 to about 800 m.sup.2 /g.
摘要:
The present invention provides a method of extracting and isolating nucleic acids from a material containing nucleic acids using a nucleic acid-binding particulate carrier. More specifically, the present invention provides a nucleic acid extraction method using a particulate carrier having a particle diameter of 0.5 to 15.0 &mgr;m, a pore diameter of 50 to 500 nm and a pore volume of 200 to 5000 mm3/g. According to the method of the invention, nucleic acids can be efficiently extracted from a biological material, in particular a material containing a large amount of contaminants, such as a clinical sample.
摘要:
Methods for nucleic acid amplification with thermostable ribonuclease H, in which single-stranded RNA (-) is prepared from RNA (+) as a target nucleic acid and the copy number of the single-stranded RNA (-) is increased through the use of thermostable ribonuclease H in combination with non-thermostable RNA-dependent DNA polymerase, non-thermostable DNA-dependent DNA polymerase and non-thermostable DNA-dependent RNA polymerase. In these methods, the number of amplification cycles is well increased and the sensitivity of detection can, therefore, be improved, as compared with the conventional methods. Also provided are methods for the detection of a target nucleic acid from RNA copies of a specific nucleic acid, obtained by any of the amplification methods, and reagent kits for use in these methods.
摘要:
This invention provides an apparatus for extracting nucleic acids from nucleic acid-containing samples. The nucleic acid extraction apparatus of the invention comprises (1) a group of extraction vessels each comprising a reactor tube in which a sample, a reagent solution, and a magnetic carrier are admixed and reacted, a drain cup for pooling an unwanted component solution, and a nucleic acid recovery tube all as secured to a support, (2) a distribution means for introducing a solution into each of the extraction vessels, (3) a stirring means for mixing the solution and magnetic carrier in the reactor tube, (4) a holding means for holding the magnetic carrier stationary within the vessel, (5) a discharging means for discharging the solution from the reactor tube while the magnetic carrier is held stationary, (6) a heating means for heating the solution and magnetic carrier in the reactor tube, and (7) a transfer means for serially transferring the vessels to the given positions.