摘要:
In one embodiment, the present disclosure provides an evolved Node B (eNB) that includes a device-to-device (D2D) module configured to allocate at least one D2D discovery region including at least one periodic discovery zone, the at least one periodic discovery zone including a first plurality of resource blocks in frequency and a second plurality of subframes in time, the D2D module further configured to configure a User Equipment (UE) to utilize the at least one D2D discovery region for transmitting a discovery packet.
摘要:
Technology is discussed for self-optimization approaches within wireless networks to optimize networks for energy efficiency, load capacity, and/or mobility, together with new, supporting channel state measurements and handover techniques. New, Channel State Information-Reference Signals (CSI-RSs) for yet-to-be-configured Cell-IDentifications (Cell-IDs) can be used to determine whether adjacent transmission cells can provide coverage for transmission cells that can be switched off for energy efficiency during formation of a Single Frequency Network (SFN). New approaches are also discussed to facilitate mobility within such a network. The new CSI-RSs and mobility approaches can also be used to split up such a SFN when changing load demands so require. Additionally, such new approaches can be used to create a SFN with a common Cell-ID where high mobility is required, such as near a roadway, and to break it up where high capacity is required, such as during a period of traffic congestion.
摘要:
Embodiments of an enhanced node B (eNB), user equipment (UE) and methods of signaling for proximity services and device-to-device (D2D) discovery in an LTE network are generally described herein. In some embodiments, the eNB may transmit signaling to indicate D2D discovery zone configuration to proximity service (ProSe) enabled UEs. The signaling may indicate time and frequency resources and a periodicity of a discovery zone and may indicate operational parameters for the discovery zone. The resources of the D2D discovery zone may be allocated for D2D discovery signal transmission by the ProSe-enabled UEs.
摘要:
Embodiments of a User Equipment (UE) and methods for packet based device-to-device (D2D) discovery in an LTE network are generally described herein. In some embodiments, UE may be enabled for proximity services and may be configured to receive signaling from an enhanced node B (eNB) indicating resources allocated for D2D discovery. The UE may configure a discovery packet in accordance with a predetermined configuration to have at least a discovery payload and a cyclic-redundancy check (CRC). The discovery payload may include discovery-related content. The UE may be configured to transmit the discovery packet on at least some of the indicated resources for receipt by a receiving UE. In some embodiments, a demodulation reference signal (DMRS) may be selected to indicate a payload size and/or MCS of the discovery packet's payload.
摘要:
Technology for a user equipment (UE) to communicate in a device to device (D2D) network is described. A temporary identification (Temp ID) can be received from an enhanced node B (eNB). A D2D discovery resource allocation can be received within a physical uplink channel from the eNB. A UE D2D discovery resource can be selected from the D2D discovery resource allocation based on the Temp ID. A D2D discovery beacon can be transmitted from the UE D2D discovery resource to enable other UEs to detect the UE.
摘要:
Embodiments of the present disclosure describe apparatuses and methods for signal designs for device-to-device (D2D) subframes. Various embodiments may include a UE with a radio transceiver to communicate with another UE via D2D communications. The UE may further include processing circuitry to generate a cyclic prefix (CP) for a first or second symbol of a D2D subframe at an orthogonal frequency division multiplexing (OFDM) resource block or a single-carrier frequency-division multiple access (SC-FDMA) resource block. Other embodiments may be described and/or claimed.
摘要:
A user equipment (UE) includes a reference signal component, a guard period component, and a transmission component. The reference signal component is configured to randomly select a sequence for a reference signal for transmission in an open device-to-device discovery packet. The guard period component is configured to determine a first symbol signal for transmission during a first symbol of the device-to-device discovery packet. The first symbol comprises a partially punctured symbol. The transmission component is configured to transmit the device-to-device discovery packet. The device-to-device discovery packet includes the first symbol having the partially punctured symbol and a reference signal based on the randomly selected sequence.
摘要:
Embodiments of user equipment (UE) and methods for transmit power control for device-to-device (D2D) discovery operations and D2D communication in a cellular network are generally described herein. In some embodiments, the UE may configure a discovery signal for transmission on discovery resources from a configured resource pool for D2D discovery. The discovery signal may be transmitted at a transmit power level based on a relative location of the discovery resources with respect to uplink cellular resources in the frequency domain.
摘要:
A user equipment (UE) may communicate channel state information in a wireless network. The UE may include transceiver circuitry to receive orthogonal frequency division multiple access (OFDMA) signals from an Enhanced node B (eNB). The UE may include processing circuitry to derive one or more principal eigen beams from the received OFDMA signals. The principal eigen beams may have a rank greater than or equal to one. The processing circuitry may derive quantized eigen beams from the principal eigen beams. The processing circuitry may select, in response to the quantized eigen beams, a subset of available antenna ports on the eNB for receiving from the eNB and transmitting to the eNB. The UE may communicate to the eNB a bit pattern of the quantized eigen beams and at least one of a wideband channel quality indicator (CQI) or a subband CQI conditioned on the quantized eigen beams.
摘要:
A generation Node B (gNB) configured for Sub-Band Full Duplex (SBFD) communication in a fifth-generation new radio (5G NR) network may communicate with two or more User Equipment (UEs) during SBFD symbols. During any one or more of the SBFD symbols, a downlink transmission may be transmitted to at least one of the UEs simultaneously with reception of an uplink transmission from at least another of the UEs. The SBFD symbols may span the carrier bandwidth and may comprise at least a downlink (DL) subband and an uplink (UL) subband within the carrier bandwidth. To communicate with the two or more UE simultaneously during the SBFD symbols, the gNB may configure the UEs that are to transmit during one or more of the SBFD symbols with timing-advance offset information to be used by the UEs to adjust a configured timing-advance for initiating an uplink transmission relative to downlink symbol timing at a UE within the one or more SBFD symbols. A timing-advance offset may delay an uplink transmission of during one or more of the SBFD symbols that follows a downlink symbol. This offset or delay, relative to the timing-advance, may provide a UL-DL switching time gap when the SBFD symbol follows a DL symbol.