Abstract:
In one aspect, a method of forming a semiconductor device includes removing a first dummy gate part extending across a first fin within a first gate trench section in an insulating layer, wherein the first dummy gate part is removed selectively to a second dummy gate part extending across a second fin within a second gate trench section in the insulating layer, and wherein each of the first and second fins is formed by a layer stack including a first layer and a second layer on the first layer, the first layer including Si1-xGex and the second layer including Si1-yGey, wherein 0≤x≤1 and 0≤y≤1 and x≠y. The method includes forming a silicon capping layer on a portion of the first fin exposed in the first gate trench section, performing an oxidation process to oxidize the silicon capping layer and to oxidize an outer thickness portion of the portion of the first fin such that a trimmed fin portion including laterally trimmed first and second layer portions remains inside the oxidized outer thickness portion, and subsequent to performing the oxidation process, removing the second dummy gate while the oxidized silicon capping layer and the oxidized outer thickness portion covers the trimmed fin portion. The method also includes removing the oxidized silicon capping layer and the oxidized outer thickness portion from the trimmed fin portion, removing the laterally trimmed first layer portion exposed in the first gate trench section and a first layer portion exposed in the second gate trench section, and forming a final gate structure around the laterally trimmed second layer portion in the first gate trench section and around a second layer portion in the second gate trench section.
Abstract:
An example method includes providing a layer stack in a trench defined by adjacent STI structures and recessing the STI structures adjacent to the layer stack to thereby expose an upper portion of the layer stack, the upper portion comprising at least a channel portion. The method further includes providing one or more protection layers on the upper portion of the layer stack and then further recessing the STI structures selectively to the protection layers and the layer stack, to thereby expose a central portion of the layer stack. And the method includes removing the central portion of the layer stack, resulting in a freestanding upper part and a lower part of the layer stack being physically separated from each other.
Abstract:
A method for producing fin structures, using Directed Self Assembly (DSA) lithographic patterning, in an area of a semiconductor substrate includes providing a semiconductor substrate covered with a shallow trench isolation (STI) layer stack on a side thereof; defining a fin area on that side of the substrate by performing a lithographic patterning step other than DSA, wherein the fin structures will be produced in the fin area; and producing the fin structures in the semiconductor substrate within the fin area according to a predetermined fin pattern using DSA lithographic patterning. The disclosure also relates to associated semiconductor structures.
Abstract:
An example method includes providing a layer stack in a trench defined by adjacent STI structures and recessing the STI structures adjacent to the layer stack to thereby expose an upper portion of the layer stack, the upper portion comprising at least a channel portion. The method further includes providing one or more protection layers on the upper portion of the layer stack and then further recessing the STI structures selectively to the protection layers and the layer stack, to thereby expose a central portion of the layer stack. And the method includes removing the central portion of the layer stack, resulting in a freestanding upper part and a lower part of the layer stack being physically separated from each other.
Abstract:
In one aspect, a method of forming a semiconductor device includes removing a first dummy gate part extending across a first fin within a first gate trench section in an insulating layer, wherein the first dummy gate part is removed selectively to a second dummy gate part extending across a second fin within a second gate trench section in the insulating layer, and wherein each of the first and second fins is formed by a layer stack including a first layer and a second layer on the first layer, the first layer including Si1-xGex and the second layer including Si1-yGey, wherein 0≤x≤1 and 0≤y≤1 and x≠y. The method includes forming a silicon capping layer on a portion of the first fin exposed in the first gate trench section, performing an oxidation process to oxidize the silicon capping layer and to oxidize an outer thickness portion of the portion of the first fin such that a trimmed fin portion including laterally trimmed first and second layer portions remains inside the oxidized outer thickness portion, and subsequent to performing the oxidation process, removing the second dummy gate while the oxidized silicon capping layer and the oxidized outer thickness portion covers the trimmed fin portion. The method also includes removing the oxidized silicon capping layer and the oxidized outer thickness portion from the trimmed fin portion, removing the laterally trimmed first layer portion exposed in the first gate trench section and a first layer portion exposed in the second gate trench section, and forming a final gate structure around the laterally trimmed second layer portion in the first gate trench section and around a second layer portion in the second gate trench section.
Abstract:
A method for producing fin structures, using Directed Self Assembly (DSA) lithographic patterning, in an area of a semiconductor substrate includes providing a semiconductor substrate covered with a shallow trench isolation (STI) layer stack on a side thereof; defining a fin area on that side of the substrate by performing a lithographic patterning step other than DSA, wherein the fin structures will be produced in the fin area; and producing the fin structures in the semiconductor substrate within the fin area according to a predetermined fin pattern using DSA lithographic patterning. The disclosure also relates to associated semiconductor structures.
Abstract:
A method for producing fin structures, using Directed Self Assembly (DSA) lithographic patterning, in an area of a semiconductor substrate includes providing a semiconductor substrate covered with a shallow trench isolation (STI) layer stack on a side thereof; defining a fin area on that side of the substrate by performing a lithographic patterning step other than DSA, wherein the fin structures will be produced in the fin area; and producing the fin structures in the semiconductor substrate within the fin area according to a predetermined fin pattern using DSA lithographic patterning. The disclosure also relates to associated semiconductor structures.
Abstract:
A method for manufacturing a field effect transistor of a non-planar type, comprising providing a substrate having an initially planar front main surface, and providing shallow trench isolation structures in the substrate on the front surface, thereby defining a plurality of fin structures in the substrate between the shallow trench isolation structures. Top surfaces of the shallow trench isolation structures and the fin structures abut on a common planar surface, and sidewalls of the fin structures are fully concealed by the shallow trench isolation structures. The method also includes forming a dummy gate structure over a central portion of the plurality of fin structures on the common planar surface, forming dielectric spacer structures around the dummy gate structure, and removing the dummy gate structure, thereby leaving a gate trench defined by the dielectric spacer structures. Further, the method includes removing an upper portion of at least two shallow trench isolation structures to expose at least a portion of the sidewalls of the fin structures within the gate trench, and forming a final gate stack in the gate trench.
Abstract:
A method for manufacturing a field effect transistor of a non-planar type, comprising providing a substrate having an initially planar front main surface, and providing shallow trench isolation structures in the substrate on the front surface, thereby defining a plurality of fin structures in the substrate between the shallow trench isolation structures. Top surfaces of the shallow trench isolation structures and the fin structures abut on a common planar surface, and sidewalls of the fin structures are fully concealed by the shallow trench isolation structures. The method also includes forming a dummy gate structure over a central portion of the plurality of fin structures on the common planar surface, forming dielectric spacer structures around the dummy gate structure, and removing the dummy gate structure, thereby leaving a gate trench defined by the dielectric spacer structures. Further, the method includes removing an upper portion of at least two shallow trench isolation structures to expose at least a portion of the sidewalls of the fin structures within the gate trench, and forming a final gate stack in the gate trench.
Abstract:
A semiconductor structure includes a device area that includes a first structure in a first layer having a top surface above a top surface of the first layer, and a second structure in a second layer on top of the first layer, where the first structure is pinned in the second structure; an overlay metrology area for optically evaluating an overlay error between the second and first structure, including: a third structure in the first layer, having a top surface above the top surface of the first layer, a fourth structure in the second layer, where the combination of the third and fourth structures mimics the combination of the first structure and the second structures, and a fifth structure in the first layer, for use as a reference structure.