Abstract:
Techniques are described for processing signal information from a high speed communication bus. The techniques include determining spatial regions on an eye by sampling a plurality of time and voltage points to determine a two-dimensional matrix. Then, the points are assigned a numerical value from combined time and voltage functions based upon a distance from eye edges (e.g., minimum setup time requirement and minimum hold time requirement along the time dimension). Sampling to generate the matrix may comprise selecting an initial point, splitting a first margin along a first dimension into equally spaced regions, and then sampling a second margin along a second dimension into equally spaced regions. Determining the points is based on shifting a strobe signal (DQS) position and a data signal (DQ) position and running a plurality of memory built-in self test (BIST) engines and a plurality of results of BIST tests.
Abstract:
The present invention is directed to server systems and methods thereof. More specifically, embodiments of the present invention provides a memory controller within a server system, where the memory controller is disengageably connected to one or more processors, a plurality of volatile memory modules, and plurality of solid-state memory modules. This memory controller may be connected to other similarly configured memory controllers. The volatile and solid-state memory modules can be removed and/or replaced. There are other embodiments as well.
Abstract:
Techniques for processing signal information from a high speed communication bus. The techniques includes determining spatial regions on an eye characterized by a start point, an end point, a middle point, a left point, and a right point. The start point is a beginning of an eye opening at a reference voltage. The end point is at an ending of eye opening at the reference voltage. The middle point is at a center point of eye opening at the reference voltage. The left point is a left sampling location characterized by a minimum setup time requirement, and the right point is a right sampling location characterized by a minimum hold time requirement. Determining the points is based on shifting a DQS position and a DQ position and running a plurality of memory built-in self test (BIST) engines and a plurality of results of BIST tests.
Abstract:
The present invention is directed to server systems and methods thereof. More specifically, embodiments of the present invention provides a memory controller within a server system, where the memory controller is disengageably connected to one or more processors, a plurality of volatile memory modules, and plurality of solid-state memory modules. This memory controller may be connected to other similarly configured memory controllers. The volatile and solid-state memory modules can be removed and/or replaced. There are other embodiments as well.
Abstract:
The present invention includes an integrated system-on-chip device configured on a substrate member. The device has a data input/output interface provided on the substrate member and configured for a predefined data rate and protocol. The device has an input/output block provided on the substrate member and coupled to the data input/output interface. The input/output block comprises a SerDes block, a CDR block, a compensation block, and an equalizer block. The SerDes block is configured to convert a first data stream of N having a first predefined data rate at a first clock rate into a second data stream of M having a second predefined data rate at a second clock rate. The device has a driver module provided on the substrate member and coupled to a signal processing block, and a driver interface provided on the substrate member and coupled to the driver module and a silicon photonics device.
Abstract:
The present invention is directed to data communication system and methods. More specifically, various embodiments of the present invention provide a communication interface that is configured to transfer data at high bandwidth using PAM format(s) over optical communication networks. A feedback mechanism is provided for adjusting the transmission power levels. There are other embodiments as well.
Abstract:
Embodiments are directed to apparatuses and methods of waveform equalization. More specifically, various embodiments provide independent rise and fall waveform shaping equalization. There are other embodiments as well.
Abstract:
In an example, the present invention includes an integrated system on chip device. The device is configured on a single silicon substrate member. In an example, the device has a driver interface provided on the substrate member and coupled to the driver module and configured to be coupled to a silicon photonics device.
Abstract:
The present invention is directed to data communication system and methods. More specifically, various embodiments of the present invention provide a communication interface that is configured to transfer data at high bandwidth using PAM format(s) over optical communication networks. A feedback mechanism is provided for adjusting the transmission power levels. There are other embodiments as well.
Abstract:
The present invention provides an integrated system-on-chip device. The device is configured on a single silicon substrate member. The device has a data input/output interface provided on the substrate member. The device has an input/output block provided on the substrate member and coupled to the data input/output interface. The device has a signal processing block provided on the substrate member and coupled to the input/output block. The device has a driver module provided on the substrate member and coupled to the signal processing block. The device further includes a driver interface and coupled to the driver module and configured to be coupled to a silicon photonics device. In an example, a control block is configured to receive and send instruction(s) in a digital format to the communication block and is configured to receive and send signals in an analog format to communicate with the silicon photonics device.