Abstract:
A conductive layer is deposited into a trench in a sacrificial layer on a substrate. An etch stop layer is deposited over the conductive layer. The sacrificial layer is removed to form a gap. In one embodiment, a beam is over a substrate. An interconnect is on the beam. An etch stop layer is over the beam. A gap is between the beam and the etch stop layer.
Abstract:
Techniques are disclosed for forming interconnects in porous dielectric materials. In accordance with some embodiments, the porosity of a host dielectric layer may be reduced temporarily by stuffing its pores with a sacrificial pore-stuffing material, such as titanium nitride (TiN), titanium dioxide (TiO2), or other suitable sacrificial material having a high etch selectivity compared to the metallization and dielectric material of the interconnect. After interconnect formation within the stuffed dielectric layer, the sacrificial pore-stuffing material can be removed from the pores of the host dielectric. In some cases, removal and curing can be performed with minimal or otherwise negligible effect on the dielectric constant (κ-value), leakage performance, and/or time-dependent dielectric breakdown (TDDB) properties of the host dielectric layer. Some embodiments can be utilized, for example, in processes involving atomic layer deposition (ALD)-based and/or chemical vapor deposition (CVD)-based backend metallization of highly porous, ultra-low-κ (ULK) dielectric materials.
Abstract:
At least one conductive line in a dielectric layer over a substrate is recessed to form a channel. The channel is self-aligned to the conductive line. The channel can be formed by etching the conductive line to a predetermined depth using a chemistry comprising an inhibitor to provide uniformity of etching independent of a crystallographic orientation. A capping layer to prevent electromigration is deposited on the recessed conductive line in the channel. The channel is configured to contain the capping layer within the width of the conductive line.
Abstract:
At least one conductive line in a dielectric layer over a substrate is recessed to form a channel. The channel is self-aligned to the conductive line. The channel can be formed by etching the conductive line to a predetermined depth using a chemistry comprising an inhibitor to provide uniformity of etching independent of a crystallographic orientation. A capping layer to prevent electromigration is deposited on the recessed conductive line in the channel. The channel is configured to contain the capping layer within the width of the conductive line.
Abstract:
At least one conductive line in a dielectric layer over a substrate is recessed to form a channel. The channel is self-aligned to the conductive line. The channel can be formed by etching the conductive line to a predetermined depth using a chemistry comprising an inhibitor to provide uniformity of etching independent of a crystallographic orientation. A capping layer to prevent electromigration is deposited on the recessed conductive line in the channel. The channel is configured to contain the capping layer within the width of the conductive line.
Abstract:
At least one conductive line in a dielectric layer over a substrate is recessed to form a channel. The channel is self-aligned to the conductive line. The channel can be formed by etching the conductive line to a predetermined depth using a chemistry comprising an inhibitor to provide uniformity of etching independent of a crystallographic orientation. A capping layer to prevent electromigration is deposited on the recessed conductive line in the channel. The channel is configured to contain the capping layer within the width of the conductive line.
Abstract:
Techniques are disclosed that enable improved shorting margin between unlanded conductive interconnect features and neighboring conductive features. In some embodiments, an etch may be applied to an insulator layer having one or more conductive features therein, such that the insulator layer is recessed below the top of the conductive features and the edges of the conductive features are rounded or otherwise softened. A conformal etchstop layer may then be deposited over the conductive features and the insulator material. A second insulator layer may be deposited above the conformal etchstop layer, and an interconnect feature may pass through the second insulator layer and the conformal etchstop layer to connect with the rounded portion of one of the conductive features. In some embodiments, the interconnect feature is an unlanded via and the unlanded portion of the via may or may not penetrate through the conformal barrier layer.
Abstract:
Described herein are techniques structures related to forming barrier walls, capping, or alloys/compounds such as treating copper so that an alloy or compound is formed, to reduce electromigration (EM) and strengthen metal reliability which degrades as the length of the lines increases in integrated circuits.
Abstract:
Techniques are disclosed that enable improved shorting margin between unlanded conductive interconnect features and neighboring conductive features. In some embodiments, an etch may be applied to an insulator layer having one or more conductive features therein, such that the insulator layer is recessed below the top of the conductive features and the edges of the conductive features are rounded or otherwise softened. A conformal etchstop layer may then be deposited over the conductive features and the insulator material. A second insulator layer may be deposited above the conformal etchstop layer, and an interconnect feature may pass through the second insulator layer and the conformal etchstop layer to connect with the rounded portion of one of the conductive features. In some embodiments, the interconnect feature is an unlanded via and the unlanded portion of the via may or may not penetrate through the conformal barrier layer.
Abstract:
Self-aligned via and plug patterning with photobuckets for back end of line (BEOL) interconnects is described. In an example, an interconnect structure for an integrated circuit includes a first layer of the interconnect structure disposed above a substrate, the first layer having a first grating of alternating metal lines and dielectric lines in a first direction. The dielectric lines have an uppermost surface higher than an uppermost surface of the metal lines. The integrated circuit also includes a second layer of the interconnect structure disposed above the first layer of the interconnect structure. The second layer includes a second grating of alternating metal lines and dielectric lines in a second direction, perpendicular to the first direction. The dielectric lines have a lowermost surface lower than a lowermost surface of the metal lines of the second grating. The dielectric lines of the second grating overlap and contact, but are distinct from, the dielectric lines of the first grating. The integrated circuit also includes a region of dielectric material disposed between the metal lines of the first grating and the metal lines of the second grating, and in a same plane as upper portions of the dielectric lines of the first grating and lower portions of the dielectric lines of the second grating. The region of dielectric material is composed of a cross-linked photolyzable material.