Abstract:
Methods, systems, and storage media are provided for exiting conditional handovers and for estimating a user equipment mobility state. Other embodiments may be described and/or claimed.
Abstract:
Techniques for enhancing the inter-frequency measurement gap to reduce measurement delay between an user equipment (UE) and an evolved NodeB (eNB). These embodiments may include identifying, by a UE, a measurement gap configuration that includes a measurement gap repetition period (MGRP), that is less than 40 milliseconds, ms; and performing inter-frequency or inter-radio access technology, RAT, measurement based on the measurement gap configuration. The embodiments may also include receiving, by an eNB, a request from a UE, for a measurement gap configuration that includes a measurement gap repetition period (MGRP) less than 40 ms; and transmitting an indication of a gap pattern that includes a MGRP that is less than 40 ms. Other embodiments may be described and/or claimed.
Abstract:
A network device (e.g., an evolved Node B (eNB) or user equipment (UE)) can process or generate a measurement gap pattern to enable network measurements of carriers or bands during measurement gaps on a per component carrier (CC) basis. The transmitting or receiving of the measurement objects (e.g., carriers or band) communicatively coupled on the network and the measurement gap pattern can be communicated via one or more radio resource control (RRC) signals, and re-configured according to a supporting CC data set identifying one or more criteria related to each CC such as UE capabilities, associations of the UE capabilities to measurement gap configurations, types of measurement gap period/gap offsets, different measurement gap patterns, an absence of a measurement gap, or other criteria related to CCs, respectively. In response to the supporting CC data set, measurement gap patterns can be dynamically re-configured per CC.
Abstract:
Briefly, in accordance with one or more embodiments, a user equipment (UE) may enter into an E-UTRAN Routing Area Paging Channel state, and is configured with an E-UTRAN Routing Area and an Anchor identifier to identify an anchor evolved Node B (eNB) for the UE. The UE selects to a new cell without performing a handover procedure, and performs a cell update procedure. The UE also may enter into a Cell Update Connected state, and is configured with an Anchor identifier. The UE selects to a new cell, performs a cell update procedure, performs a buffer request procedure, and performs a cell update procedure to download buffered data and to perform data transmission with the new cell.
Abstract:
Beam measurement reporting circuitry is provided for a user equipment (UE) of a wireless telecommunications network. The beam measurement reporting circuitry receives from the network, beam measurement configuration data and measures signal qualities for a plurality of received beams originating from a beam source of the network (serving and neighbouring cells). Beam measurements are performed by the UE to facilitate identification of a non-zero integer, N, beams depending upon the signal quality measurements. The identified beams can be candidate beams for a handover. Circuitry for a NodeB is also provided. A UE, a NodeB and corresponding methods incorporating the beam measurement reporting circuitry and beam measurement configuration circuitry are also provided.
Abstract:
An apparatus of a base station includes a memory device and processing circuitry operatively coupled to the memory device. The processing circuitry processes a buffer status report (BSR) from a user equipment (UE) indicating an amount of data in a buffer of the UE. The processing circuitry further determines a ratio of WLAN uplink data to be transmitted on a WLAN channel of the UE to long term evolution (LTE) uplink data to be transmitted on a LTE channel. Furthermore, the processing circuitry encodes a protocol data unit (PDU) indicating the amount, wherein the PDU is to be transmitted to the UE.
Abstract:
Embodiments of the present disclosure describe methods, apparatuses, and systems for managing bearers in a wireless communication system. In some embodiments, an apparatus, to be employed by a user equipment (UE), may comprise a communication module to: communicate with a core network on a first bearer through a master evolved Node B (MeNB); receive, from the MeNB, a first message of reconfiguring a radio resource control (RRC) connection to establish a second bearer between the UE and the core network and through a secondary eNB (SeNB); synchronize, in response to the message, with the SeNB in order to establish the second bearer; and communicate with the core network on the second bearer through the SeNB, and continue communicating with the core network on the first bearer through the MeNB.
Abstract:
Embodiments of the present disclosure describe methods, apparatuses, storage media, and systems for beam management techniques in new radio (NR) applications. Various embodiments describe how to manage beam monitoring including measuring and reporting in an NR network efficiently so that a UE that is capable of measuring a minimum number of beams may report measurement results corresponding to a maximum number of beams. Such a beam management may take into consideration UE capability and network handling capacity to achieve effective and efficient NR communications. Other embodiments may be described and claimed.
Abstract:
User Equipment (UE), computer readable media, and methods to modify communication channel measurement timing based on a mobility of the UE are disclosed. The UE may include circuitry configured to determine a plurality of signals from one or more cells, determine a first value for a first performance metric associated with a first cell of the one or more cells, wherein the first value is determined from a first measurement, select the first cell for a first communication based on the first value, determine first location information associated with the UE, determine, following the first measurement and using the first location information, that the UE is stationary, and delay, in response to the determination that the UE is stationary, a second measurement of the first performance metric. In various alternate embodiments, different measurement types may be used for mobility and channel quality determinations. In further embodiments, only measurements for unused channels may be delayed.
Abstract:
Methods and apparatuses for communicating in a wireless network including provision of a user equipment for use in a wireless communication system, the user equipment comprising a communication module configured to obtain a first signal measurement value, associated with a reference signal transmitted by a serving eNB and a second signal measurement value associated with a reference signal transmitted by a further eNB, and control logic configured to initiate a time to trigger, TTT, timer based on a determination that the first signal measurement value is less than the second signal measurement value, and terminate the TTT timer based on a determination that the first signal measurement value is less than the second signal measurement value by more than a threshold value.