Abstract:
A user equipment (UE) may receiving, from an evolved NodeB (eNB), configuration information related to a restriction that one or more radio bearers are transmitted only on a subset of serving cells used in carrier aggregation of a long term evolution (LTE), LTE-advanced (LTE-A), and or 5G wireless network. The UE may transmit the one or more radio bearers to the eNB on one or more serving cells of the subset of serving cells in response to receiving the configuration information.
Abstract:
Embodiments of the present disclosure describe methods, apparatuses, and systems for managing bearers in a wireless communication system. In some embodiments, an apparatus, to be employed by a user equipment (UE), may comprise a communication module to: communicate with a core network on a first bearer through a master evolved Node B (MeNB); receive, from the MeNB, a first message of reconfiguring a radio resource control (RRC) connection to establish a second bearer between the UE and the core network and through a secondary eNB (SeNB); synchronize, in response to the message, with the SeNB in order to establish the second bearer; and communicate with the core network on the second bearer through the SeNB, and continue communicating with the core network on the first bearer through the MeNB.
Abstract:
User Equipment (UE), computer readable media, and methods to modify communication channel measurement timing based on a mobility of the UE are disclosed. The UE may include circuitry configured to determine a plurality of signals from one or more cells, determine a first value for a first performance metric associated with a first cell of the one or more cells, wherein the first value is determined from a first measurement, select the first cell for a first communication based on the first value, determine first location information associated with the UE, determine, following the first measurement and using the first location information, that the UE is stationary, and delay, in response to the determination that the UE is stationary, a second measurement of the first performance metric. In various alternate embodiments, different measurement types may be used for mobility and channel quality determinations. In further embodiments, only measurements for unused channels may be delayed.
Abstract:
Generally discussed herein are systems and methods that include Radio Link Monitoring (RLM) on an Enhanced Physical Downlink Control Channel (EPDCCH) transmission within a Heterogeneous Network (HetNet). RLM can be done without regard to a Physical Downlink Control Channel (PDCCH) quality level. A User Equipment (UE) can be configured to receive the EPDCCH transmission from an Enhanced Node B (eNodeB). A quality level of the EPDCCH transmission can be estimated based upon a BLock Error Rate (BLER) of the EPDCCH transmission. If the quality level is lower than a first threshold value for a first specified number of consecutive periods, a timer can be started. In response to determining the quality level is greater than a second threshold for a second specified number of consecutive periods stop the timer before the timer expires. If the timer is stopped before the timer expires, declare a Radio Link Failure (RLF).
Abstract:
Embodiments of the present disclosure describe methods, apparatuses, and systems for managing bearers in a wireless communication system. In some embodiments, an apparatus, to be employed by a user equipment (UE), may comprise a communication module to: communicate with a core network on a first bearer through a master evolved Node B (MeNB); receive, from the MeNB, a first message of reconfiguring a radio resource control (RRC) connection to establish a second bearer between the UE and the core network and through a secondary eNB (SeNB); synchronize, in response to the message, with the SeNB in order to establish the second bearer; and communicate with the core network on the second bearer through the SeNB, and continue communicating with the core network on the first bearer through the MeNB.