Abstract:
Circuits and methods are provided for a signal path between circuit parts. During normal operation, a delay is deactivated. During a burn-in test, the delay is activated. In the deactivated state, a delay component may be disconnected from a supply voltage.
Abstract:
According to various embodiments, an electronic circuit includes a plurality of clock generators wherein each clock generator is configured to store a counter value, to receive a reference clock, to change the counter value in accordance with the reference clock and to generate at least one clock signal based on the counter value. The circuit also includes a comparator configured to receive, for each of at least two of the plurality of clock generators, the counter value and compare the received counter values and an error handling circuit configured to initiate an error handling based on the result of the comparison.
Abstract:
A embodiment relates to a method for processing an erase counter comprising erase counter fields, the method comprising the steps of (i) determining an unused erase counter field; (ii) writing a selection code and an address information in the unused erase counter field, wherein the selection code and the address information are combined to determine at least one physical address of a memory.
Abstract:
Systems, methods, and circuits are provided for facilitating negative resistance margin testing in an oscillator circuit. An example oscillator circuit includes amplifier circuitry configured to be coupled in parallel with a resonator and variable resistance circuitry configured to, in response to a resistance control signal, adjust a resistance of the oscillator circuit.
Abstract:
A device is provided for time measurement of a clock-based signal comprising a sample stage comprising a switching device that is driven by a control signal and a capacitance (Cs), wherein the sample stage is arranged to transform an analog input signal in an analog output signal, the device further comprising an analog-to-digital converter to convert the analog output signal into a digital output signal, wherein the input signal applied to the sample stage is a reference signal and wherein the clock-based signal is applied to the control signal. Also, an according method is suggested.
Abstract:
According to various embodiments, an electronic circuit includes a plurality of clock generators wherein each clock generator is configured to store a counter value, to receive a reference clock, to change the counter value in accordance with the reference clock and to generate at least one clock signal based on the counter value. The circuit also includes a comparator configured to receive, for each of at least two of the plurality of clock generators, the counter value and compare the received counter values and an error handling circuit configured to initiate an error handling based on the result of the comparison.
Abstract:
An embodiment integrated circuit (IC) clock distributor system includes a first IC. The first IC includes a clock synchronizer circuit and a clock generator circuit. The clock synchronizer circuit includes a first input coupled to a first clock transfer path including a replica delay of a portion of a first signal path included in an external IC. The clock synchronizer circuit also includes a second input coupled to a second clock transfer path. The clock generator circuit also includes an input coupled to an output of at least one of a reference oscillator and the clock synchronizer circuit. Delay of the second clock transfer path includes delay of the first signal path.
Abstract:
A method of detecting bit errors in a data storage device is provided, which includes comparing a first bit sequence accessed during a read out operation of the data storage device with a second bit sequence that corresponds to an expected memory state of the data storage device.
Abstract:
Systems, methods, and circuits are provided for facilitating negative resistance margin testing in an oscillator circuit. An example oscillator circuit includes amplifier circuitry configured to be coupled in parallel with a resonator and variable resistance circuitry configured to, in response to a resistance control signal, adjust a resistance of the oscillator circuit.
Abstract:
Circuits and methods are provided for a signal path between circuit parts. During normal operation, a delay is deactivated. During a burn-in test, the delay is activated. In the deactivated state, a delay component may be disconnected from a supply voltage.