Abstract:
A beam modifier device is provided that includes scattering portions in which particles vertically impinging on an exposure surface of the beam modifier device are deflected from a vertical direction. A total permeability for the particles changes along a lateral direction parallel to the exposure surface.
Abstract:
A semiconductor device includes a semiconductor substrate and a metal nitride layer above the semiconductor substrate. The metal nitride layer forms at least one interface region with the semiconductor substrate. The at least one interface region includes a first portion of the semiconductor substrate, a first portion of the metal nitride layer, and an interface between the first portion of the semiconductor substrate and the first portion of the metal nitride layer. A concentration of nitrogen content at the first portion of the metal nitride layer is higher than a concentration of nitrogen content at a second portion, of the metal nitride layer, outside the interface region. A distribution of nitrogen content throughout the metal nitride layer may have a maximum concentration at the first portion of the metal nitride layer. Alternatively and/or additionally, a method for producing such a semiconductor device is provided herein.
Abstract:
In an embodiment, a semiconductor device is provided. The semiconductor device may include a semiconductor body including a first doped region of a first conductivity type and a second doped region of a second conductivity type. The semiconductor device may include a metal structure, in the semiconductor body, overlying the second doped region. The metal structure may include a first sidewall adjacent a first portion of the first doped region, a second sidewall adjacent a second portion of the first doped region, and a third sidewall adjacent the second doped region. The semiconductor device may include a Schottky contact including a junction of the third sidewall of the metal structure with the second doped region.
Abstract:
A semiconductor device includes a silicon carbide body including a transistor cell region and an idle region. The transistor cell region includes transistor cells. The idle region is devoid of transistor cells. The idle region includes a transition region between the transistor cell region and a side surface of the silicon carbide body, a gate pad region, and a diode structure comprising at least one of a merged pin Schottky diode structure or a merged pin heterojunction diode structure in at least one of the transition region or the gate pad region.
Abstract:
A silicon carbide substrate is provided that includes a drift layer of a first conductivity type and a trench extending from a main surface of the silicon carbide substrate into the drift layer. First dopants are implanted through a first trench sidewall of the trench. The first dopants have a second conductivity type and are implanted at a first implant angle into the silicon carbide substrate, wherein at the first implant angle channeling occurs in the silicon carbide substrate. The first dopants form a first compensation layer extending parallel to the first trench sidewall.
Abstract:
A silicon carbide device includes a silicon carbide body including a source region of a first conductivity type, a cathode region of the first conductivity type and separation regions of a second conductivity type. A stripe-shaped gate structure extends along a first direction and adjoins the source region and the separation regions. The silicon carbide device includes a first load electrode. Along the first direction, the cathode region is between two separation regions of the separation regions and at least one separation region of the separation regions is between the cathode region and the source region. The source region and the first load electrode form an ohmic contact. The first load electrode and the cathode region form a Schottky contact.
Abstract:
A semiconductor device is provided that includes a silicon carbide substrate including a main surface at which a plurality of doped zones are formed in a junction termination extension zone of the silicon carbide substrate, the plurality of doped zones are arranged such that a lateral dopant concentration gradient is formed that decreases from a central region of the silicon carbide substrate to an outer edge region of the silicon carbide substrate.