-
1.
公开(公告)号:US20240429301A1
公开(公告)日:2024-12-26
申请号:US18341467
申请日:2023-06-26
Applicant: Intel Corporation
Inventor: Rachel A. Steinhardt , Dmitri Evgenievich Nikonov , Kevin P. O'Brien , John J. Plombon , Tristan A. Tronic , Ian Alexander Young , Matthew V. Metz , Marko Radosavljevic , Carly Rogan , Brandon Holybee , Raseong Kim , Punyashloka Debashis , Dominique A. Adams , I-Cheng Tung , Arnab Sen Gupta , Gauri Auluck , Scott B. Clendenning , Pratyush P. Buragohain
IPC: H01L29/423 , H01L29/06 , H01L29/66 , H01L29/786
Abstract: A transistor device may be formed with a doped perovskite material as a channel region. The doped perovskite material may be formed via an epitaxial growth process from a seed layer, and the channel regions of the transistor device may be formed from lateral overgrowth from the epitaxial growth process.
-
公开(公告)号:US20250006841A1
公开(公告)日:2025-01-02
申请号:US18345127
申请日:2023-06-30
Applicant: Intel Corporation
Inventor: Arnab Sen Gupta , Dmitri Evgenievich Nikonov , John J. Plombon , Rachel A. Steinhardt , Punyashloka Debashis , Kevin P. O'Brien , Matthew V. Metz , Scott B. Clendenning , Brandon Holybee , Marko Radosavljevic , Ian Alexander Young , I-Cheng Tung , Sudarat Lee , Raseong Kim , Pratyush P. Buragohain
IPC: H01L29/78 , H01L29/06 , H01L29/221 , H01L29/423 , H01L29/775 , H01L29/786
Abstract: Technologies for a field effect transistor (FET) with a ferroelectric gate dielectric are disclosed. In an illustrative embodiment, a transistor includes a gate of strontium ruthenate and a ferroelectric gate dielectric layer of barium titanate. In order to prevent migration of ruthenium from the strontium ruthenate to the barium titanate, a barrier layer is placed between the gate and the ferroelectric gate dielectric layer. The barrier layer may be a metal oxide, such as strontium oxide, barium oxide, zirconium oxide, etc.
-
公开(公告)号:US20250006839A1
公开(公告)日:2025-01-02
申请号:US18343203
申请日:2023-06-28
Applicant: Intel Corporation
Inventor: Kevin P. O'Brien , Dmitri Evgenievich Nikonov , Rachel A. Steinhardt , Pratyush P. Buragohain , John J. Plombon , Hai Li , Gauri Auluck , I-Cheng Tung , Tristan A. Tronic , Dominique A. Adams , Punyashloka Debashis , Raseong Kim , Carly Rogan , Arnab Sen Gupta , Brandon Holybee , Marko Radosavljevic , Uygar E. Avci , Ian Alexander Young , Matthew V. Metz
Abstract: A transistor device may include a first perovskite gate material, a first perovskite ferroelectric material on the first gate material, a first p-type perovskite semiconductor material on the first ferroelectric material, a second perovskite ferroelectric material on the first semiconductor material, a second perovskite gate material on the second ferroelectric material, a third perovskite ferroelectric material on the second gate material, a second p-type perovskite semiconductor material on the third ferroelectric material, a fourth perovskite ferroelectric material on the second semiconductor material, a third perovskite gate material on the fourth ferroelectric material, a first source/drain metal adjacent a first side of each of the first semiconductor material and the second semiconductor material, a second source/drain metal adjacent a second side opposite the first side of each of the first semiconductor material and the second semiconductor material, and dielectric materials between the source/drain metals and the gate materials.
-
公开(公告)号:US20250107147A1
公开(公告)日:2025-03-27
申请号:US18476248
申请日:2023-09-27
Applicant: Intel Corporation
Inventor: Mahmut Sami Kavrik , Uygar E. Avci , Pratyush P. Buragohain , Chelsey Dorow , Jack T. Kavalieros , Chia-Ching Lin , Matthew V. Metz , Wouter Mortelmans , Carl Hugo Naylor , Kevin P. O'Brien , Ashish Verma Penumatcha , Carly Rogan , Rachel A. Steinhardt , Tristan A. Tronic , Andrey Vyatskikh
IPC: H01L29/786 , H01L21/02 , H01L21/46 , H01L27/092 , H01L29/24 , H01L29/51 , H01L29/66 , H01L29/76
Abstract: Hybrid bonding interconnect (HBI) architectures for scalability. Embodiments implement a bonding layer on a semiconductor die that includes a thick oxide layer overlaid with a thin layer of a hermetic material including silicon and at least one of carbon and nitrogen. The conductive bonds of the semiconductor die are placed in the thick oxide layer and exposed at the surface of the hermetic material. Some embodiments implement a non-bonding moisture seal ring (MSR) structure.
-
公开(公告)号:US20250006840A1
公开(公告)日:2025-01-02
申请号:US18344022
申请日:2023-06-29
Applicant: INTEL CORPORATION
Inventor: Rachel A. Steinhardt , Kevin P. O'Brien , Dmitri Evgenievich Nikonov , John J. Plombon , Tristan A. Tronic , Ian Alexander Young , Matthew V. Metz , Marko Radosavljevic , Carly Rogan , Brandon Holybee , Raseong Kim , Punyashloka Debashis , Dominique A. Adams , I-Cheng Tung , Arnab Sen Gupta , Gauri Auluck , Scott B. Clendenning , Pratyush P. Buragohain , Hai Li
IPC: H01L29/78 , H01L29/76 , H01L29/786
Abstract: In one embodiment, a negative capacitance transistor device includes a perovskite semiconductor material layer with first and second perovskite conductors on opposite ends of the perovskite semiconductor material layer. The device further includes a dielectric material layer on the perovskite semiconductor material layer between the first and second perovskite conductors, a perovskite ferroelectric material layer on the dielectric material layer, and a third perovskite conductor on the perovskite ferroelectric material layer.
-
公开(公告)号:US20250006791A1
公开(公告)日:2025-01-02
申请号:US18346227
申请日:2023-07-01
Applicant: Intel Corporation
Inventor: Rachel A. Steinhardt , Kevin P. O'Brien , Dominique A. Adams , Gauri Auluck , Pratyush P. Buragohain , Scott B. Clendenning , Punyashloka Debashis , Arnab Sen Gupta , Brandon Holybee , Raseong Kim , Matthew V. Metz , John J. Plombon , Marko Radosavljevic , Carly Rogan , Tristan A. Tronic , I-Cheng Tung , Ian Alexander Young , Dmitri Evgenievich Nikonov
IPC: H01L29/08 , H01L29/06 , H01L29/12 , H01L29/423 , H01L29/51 , H01L29/66 , H01L29/775 , H01L29/78 , H01L29/786
Abstract: Perovskite oxide field effect transistors comprise perovskite oxide materials for the channel, source, drain, and gate oxide regions. The source and drain regions are doped with a higher concentration of n-type or p-type dopants (depending on whether the transistor is an n-type or p-type transistor) than the dopant concentration in the channel region to minimize Schottky barrier height between the source and drain regions and the source and drain metal contact and contact resistance.
-
-
-
-
-