摘要:
This invention relates to methods for improved cell-based therapies for retinal degeneration and for differentiating human embryonic stem cells and human embryo-derived into retinal pigment epithelium (RPE) cells and other retinal progenitor cells.
摘要:
This invention relates to methods for improved cell-based therapies for retinal degeneration and for differentiating human embryonic stem cells and human embryo-derived into retinal pigment epithelium (RPE) cells and other retinal progenitor cells.
摘要:
A device that includes a living cell or tissue and an agent that inhibits the ability of a host molecule to damage the cell or tissue. The device can be constructed in various forms including an implantable device, a composite microreactor and a double composite microreactor. The composite microreactor includes an internal particle that includes a living cell or tissue, an internal particle matrix that includes the living cell or tissue and an internal semipermeable coating enclosing the internal particle matrix, a gel super matrix in which the internal particle is embedded, and an agent that inhibits the ability of a host molecule to damage the cell or tissue. The double composite microreactor includes an internal particle, a particle that includes a particle matrix in which the internal particle is embedded, a super matrix in which the particle is embedded, and an agent that inhibits the ability of a host molecule to damage the living cell or tissue.
摘要:
Methods for inhibition of fibrotic rejection of implanted devices which contain cells by administering to the recipient of the devices an amount of a non-steroidal anti-inflammatory agent (NSAID) sufficient to inhibit fibrotic inactivation of the device. Most NSAID's are carboxylic acids (R--COOH) or enolic acids (R--COH).
摘要:
The invention covers a method of implanting a living donor cell into a host animal without inflammatory response or rejection of the donor cell by the host animal, by obtaining an uncoated particle of a biocompatible, temperature-independent gel that encapsulates the living donor cell, wherein the uncoated particle provides a molecular weight cutoff that prevents host animal immune cells from entering the particle, yet does not have to prevent entry of host animal IgG and complement into the particle, and implanting the uncoated particle into the host animal.
摘要:
Microcapsules and composite microreactors are prepared that immunoisolate living cells such as islet cells or genetically engineered cells. A reduced volume microcapsule is formed by coating a gel matrix particle with a polyamino acid of 15,000 daltons or less molecular weight to reduce volume of the particle by at least 30% as compared to volume prior to coating. A composite microreactor includes the microcapsule containing cell embedded in a gel matrix and provides a molecular weight cutoff that prevents molecules larger than about 400,000 daltons from containing the living cell. A double composite microreactor includes an internal particle that includes an internal particle gel matrix containing a living cell and having a coating, a particle that includes the internal particle embedded in a particle gel matrix and a coating, and a gel super matrix in which the particle is embedded. At least one of the coatings is a volume reducing coating of polyamino acid of 15,000 daltons or less molecular weight. The gel matrices may be alginate, the polyamino acid may be polylysine or polyornithine, and at least one of the gel matrices or coatings may be treated by aging for between 2 hours and 14 days. The internal particle, particle and composite microreactor may have diameters respectively between 50 and 700 microns, 400 and 800 microns and 300 and 1500 microns. to be implanted so there is little or no need for immunosuppressant or antifibrotic drugs. A reduced volume microcapsule is formed by coating a gel matrix particle with a polyamino acid of 15,000 daltons or less molecular weight to reduce volume of the particle by at least 30% as compared to volume prior to coating. A composite microreactor is provided by embedding the microcapsule when containing a living cell in a gel matrix to obtain a molecular weight cutoff that prevents molecules larger than about 400,000 daltons from contacting the living cell. A double composite microreactor is formed containing an internal particle including an internal particle gel matrix containing a living cell and having a coating, a particle including the internal particle embedded in a particle gel matrix having a coating, and a gel super matrix in which the particle is embedded. At least one of the coatings is a volume reducing coating of polyamino acid of 15,000 daltons or less molecular weight. The gel matrices may be alginate, the polyamino acid may be polylysine or polyornithine, and at least one of the gel matrices or coatings may be treated by aging for between 2 hours and 14 days. The internal particle, particle and composite microreactor may have diameters respectively between 50 and 700 microns, 400 and 800 microns and 300 and 1500 microns.
摘要:
The invention covers a method of implanting a living donor cell into a host animal without inflammatory response or rejection of the donor cell by the host animal, by obtaining an uncoated particle of a biocompatible, temperature-independent gel that encapsulates the living donor cell, wherein the uncoated particle provides a molecular weight cutoff that prevents host animal immune cells from entering the particle, yet does not have to prevent entry of host animal IgG and complement into the particle, and implanting the uncoated particle into the host animal.