摘要:
Provided is a light-emitting device and a method of manufacturing the same. The light-emitting device includes a substrate having at least one protruded portion with a curved surface in which a consistent defect density and uniform stress distribution can be obtained even when the growth of the semiconductor crystal layer and the forming of the light-emitting device are completed. In addition, the light-emitting device has a high the light extraction efficiency for extracting light generated at an electroluminescense layer externally.
摘要:
Provided is a light-emitting device and a method of manufacturing the same. The light-emitting device includes a substrate having at least one protruded portion with a curved surface in which a consistent defect density and uniform stress distribution can be obtained even when the growth of the semiconductor crystal layer and the forming of the light-emitting device are completed. In addition, the light-emitting device has a high the light extraction efficiency for extracting light generated at an electroluminescense layer externally.
摘要:
A monolithic white light emitting device is provided. An active layer in the monolithic white light emitting device is doped with silicon or rare earth metal that forms a sub-band. The number of active layers included in the monolithic white light emitting device is one or two. When two active layers are included in the monolithic white light emitting device, a cladding layer is interposed between the two active layers. According to this light emission structure, white light can be emitted by a semiconductor, so a phosphor is not necessary. The monolithic white light emitting device is easily manufactured at a low cost and applied to a wide range of fields compared with a conventional white light emitting device that needs a help of a phosphor.
摘要:
A monolithic white light emitting device is provided. An active layer in the monolithic white light emitting device is doped with silicon or rare earth metal that forms a sub-band. The number of active layers included in the monolithic white light emitting device is one or two. When two active layers are included in the monolithic white light emitting device, a cladding layer is interposed between the two active layers. According to this light emission structure, white light can be emitted by a semiconductor, so a phosphor is not necessary. The monolithic white light emitting device is easily manufactured at a low cost and applied to a wide range of fields compared with a conventional white light emitting device that needs a help of a phosphor.
摘要:
A light emitting diode and a method for fabricating the same are provided. The light emitting diode includes: a transparent substrate; a semiconductor material layer formed on the top surface of a substrate with an active layer generating light; and a fluorescent layer formed on the back surface of the substrate with controlled varied thicknesses. The ratio of light whose wavelength is shifted while propagating through the fluorescent layer and the original light generated in the active layer can be controlled by adjusting the thickness of the fluorescent layer, to emit desirable homogeneous white light from the light emitting diode.
摘要:
Provided is a light emitting device and a method of manufacturing the same. The light emitting device comprises a transparent substrate, an n-type compound semiconductor layer formed on the transparent substrate, an active layer, a p-type compound semiconductor layer, and a p-type electrode sequentially formed on a first region of the n-type compound semiconductor layer, and an n-type electrode formed on a second region separated from the first region of the n-type compound semiconductor layer, wherein the p-type electrode comprises first and second electrodes, each electrode having different resistance and reflectance.
摘要:
A backlight unit for a liquid crystal display (LCD) using a light emitting diode (LED) is provided. The backlight unit includes a blue light source, a red light source, and a green light source. The green light source includes an ultraviolet (UV) LED and a green phosphor excited by light emitted from the UV LED.
摘要:
Provided is a method of forming a fine pattern having a pattern dimension of 1 μm or less, repeatedly with reproducibility. The method of forming the fine pattern includes: forming an azobenzene-functionalized polymer film on an etched layer; irradiating the azobenzene-functionalized polymer film using an interference laser beam to form a patterned azobenzene-functionalized polymer film having fine-patterned surface relief gratings by a photophysical mass transporting of the azobenzene-functionalized polymer; etching the etched layer using the azobenzene-functionalized polymer film having the surface relief grating patterns as an etching mask; and removing the patterned azobenzene-functionalized polymer film.
摘要:
Provided are a light emitting diode (LED) module and a method of manufacturing the same. The LED module may include a package housing including an inner space, a light-emitting chip in the inner space of the package housing, a phosphor layer including a fluorescent material and converting light emitted from the light-emitting chip to light having a longer wavelength than that of the light emitted from the light-emitting chip. The concentration of the fluorescent material of the phosphor layer may be inhomogeneous. The method of manufacturing the LED module may include providing or forming a package housing having an inner space and including a light-emitting chip in the inner space, measuring a radiation pattern of light emitted from the light-emitting chip, and forming a phosphor layer including a fluorescent material on the light-emitting chip and having characteristics that may be determined according to the radiation pattern.
摘要:
In a light emitting diode, a first semiconductor layer supplies electrons, and a second semiconductor layer supplies holes. An active layer is formed between the first and second semiconductor layers. The active layer receives electrons and holes, and emits light in response to coupling between the electrons and the holes. A first reflective layer is formed on a bottom portion of the first semiconductor layer, and a second reflective layer is formed on a top portion of the second semiconductor layer. The light emitted from the active layer exits toward a side of the active layer.