摘要:
A process for modifying surfaces of zeolites and molecular sieve membranes to decrease effective pore size for separation of materials includes atomic layer controlled vapor or liquid deposition. The atomic layer controlled deposition process steps include (i) exposing the surface to a metal atom coordinated with ligand groups having bonds that are hydrolyzable to form molecular bonded structures on the surface, which structures comprise the metal atoms coordinated with the ligand group or a modified ligand group and then (ii) hydrolyzing the bonds and possibly, but not necessarily, cross-linking the bonds in the ligand or modified ligand group.
摘要:
A modified zeolite or molecular sieve membrane for separation of materials on a molecular scale. The modified membrane is fabricated to wholly or partially block regions between zeolite crystals to inhibit transfer of larger molecules through the membrane, but without blocking or substantially inhibiting transfer of small molecules through pores in the crystalline structure. The modified membrane has a monomolecular layer deposited on the zeolite surface which has coordinated groups of atoms that include (i) a metal atom bonded to oxygen atoms that are bonded to the zeolite substrate atoms (e.g., silicon atoms) and (ii) either hydroxyl groups bonded to the metal atoms or additional oxygen atoms bonded to the metal atoms.
摘要:
Methods and apparatuses to selectively deposit a dielectric on a self-assembled monolayer (“SAM”) adsorbed metal are described. A wafer includes a device having a first electrode. A first self-assembled monolayer is deposited on the wafer covering the first electrode. Next, a portion of the first self-assembled monolayer is removed to expose the first electrode. The first self-assembled monolayer includes a hydrophobic layer. Further, second self-assembled monolayer is deposited on the first electrode. The second self-assembled monolayer includes a hydrophilic layer. Next, an insulating layer is deposited on the second self-assembled monolayer. Further, self-aligned contacts to one or more second electrodes of the device are formed.
摘要:
A method, apparatus, system, and machine-readable medium for an interconnect structure in a semiconductor device and its method of formation is disclosed. Embodiments comprise a carbon-doped and silicon-doped interconnect having a concentration of silicon to avoid to forming a copper silicide layer between an interconnect and a passivation layer. Some embodiments provide unexpected results in electromigration reliability in regards to activation energy and/or mean time to failure.
摘要:
The present invention discloses a method including: determining whether a surface of a dielectric layer is reactive; activating the surface if the surface is not reactive; performing a cycle on the surface, the cycle including: reacting the surface with a metal; and activating the metal. The present invention also discloses a structure including: a substrate; a first interlayer dielectric located over the substrate; a first adhesion promoter layer located over the first interlayer dielectric; an etch stop layer located over the first adhesion promoter layer; a second adhesion promoter layer located over the etch stop layer; and a second interlayer dielectric located over the second adhesion promoter layer.
摘要:
Embodiments of the invention provide a device with a hard mask layer between first and second ILD layers. The hard mask layer may have a k value approximately equal to the first and/or second ILD layers.
摘要:
A method, apparatus, system, and machine-readable medium for an interconnect structure in a semiconductor device and its method of formation is disclosed. Embodiments comprise a carbon-doped and silicon-doped interconnect having a concentration of silicon to avoid to forming a copper silicide layer between an interconnect and a passivation layer. Some embodiments provide unexpected results in electromigration reliability in regards to activation energy and/or mean time to failure.
摘要:
Methods and apparatuses to selectively deposit a dielectric on a self-assembled monolayer (“SAM”) adsorbed metal are described. A wafer includes a device having a first electrode. A first self-assembled monolayer is deposited on the wafer covering the first electrode. Next, a portion of the first self-assembled monolayer is removed to expose the first electrode. The first self-assembled monolayer includes a hydrophobic layer. Further, second self-assembled monolayer is deposited on the first electrode. The second self-assembled monolayer includes a hydrophilic layer. Next, an insulating layer is deposited on the second self-assembled monolayer. Further, self-aligned contacts to one or more second electrodes of the device are formed.
摘要:
In one embodiment, the present invention includes introducing a conventional precursor and an organic precursor having an organic porogen into a vapor deposition apparatus; and forming a dielectric layer having the organic porogen on a substrate within the vapor deposition apparatus from the precursors. In certain embodiments, at least a portion of the organic porogen may be removed after subsequent processing, such as dual damascene processing.
摘要:
In one embodiment, the present invention includes introducing a precursor containing hydrocarbon substituents and optionally a second conventional or hydrocarbon-containing precursor into a vapor deposition apparatus; and forming a dielectric layer having the hydrocarbon substituents on a substrate within the vapor deposition apparatus from the precursor(s). In certain embodiments, at least a portion of the hydrocarbon substituents may be later removed from the dielectric layer to reduce density thereof.