摘要:
A process for breaking silicide stringers extending between silicide regions of different active regions on a semiconductor device is provided. Consistent with an exemplary fabrication process, two adjacent silicon active regions are formed on a substrate and a metal layer is formed over the two adjacent silicon active regions. The metal layer is then reacted with the silicon active regions to form a metal silicide on each silicon active region. This silicide reaction also forms silicide stringers extending from each silicon active region. Finally, at least part of each silicide stringer is removed. During the formation of the silicide stringers at least one silicide stringer may be formed which bridges the metal silicide over one of the silicon regions and the metal silicide over the other silicon region. In such circumstances, the removal process may, for example, break the silicide stringer and electrically decouple the two silicon regions. The two silicon active regions may, for example, be a gate electrode and an adjacet source/drain region. As another example, the two adjacent active regions may be two nearby polysilicon lines.
摘要:
A method that includes forming a gate of a semiconductor device on a substrate, and etching sidewall spacers on sides of the gate to provide a proximity value, where the proximity value is defined as a distance between the gate and an edge of a performance-enhancing region. The sidewall spacers are used to define the edge of the region during formation of the region in the substrate. The method also includes pre-cleaning the gate and the substrate in preparation for formation of the region, where the etching and the pre-cleaning are performed in a continuous vacuum.
摘要:
A first bias charge is provided to first bias region at a first level of an electronic device, the first bias region directly underlying a first transistor having a channel region at a second level that is electrically isolated from the first bias region. A voltage threshold of the first transistor is based upon the first bias charge. A second bias charge is provided to second bias region at the first level of an electronic device, the second bias region directly underlying a second transistor having a channel region at a second level that is electrically isolated from the first bias region. A voltage threshold of the second transistor is based upon the second bias charge.
摘要:
A process for forming a silicide layer using a metal layer formed by collimated deposition is provided. The collimated metal layer may, for example, be formed by sputtering metal particles and filtering the metal particles prior to forming the metal layer. By depositing metal in this manner, the resistance of the resultant metal silicide layer can be reduced as compared to metal silicide layers formed using conventional techniques. Lower silicidation reaction temperatures may also be employed.
摘要:
The present invention is directed to a method for manufacturing a semiconductor device having a reduced feature size and improved electrical performance characteristics. The method includes forming at least one masking layer and forming an opening in said masking layer. The method further includes forming a metal layer above at least a portion of said masking layer and removing said masking layer to define a gate electrode comprised of a portion of said metal layer. The method also includes removing the masking layer to expose portions of the surface of the substrate and doping the exposed portions of the substrate to define at least one source or drain region.
摘要:
A method of integrating lightly doped drain implantation for complementary metal oxide semiconductor (CMOS) device fabrication includes providing a semiconductor substrate having a p-well region and an n-well region. A patterned gate oxide and gate electrode are formed on each of the p-well region and the n-well region. One of either the p-well region or the n-well region is masked with a patterned photoresist having a prescribed thickness, leaving a non-masked region exposed. Ions are then implanted to form desired p-type lightly doped drain (Pldd) regions in the n-well region, including Pldd regions adjacent to edges of the gate electrode in the n-well region. Lastly, ions are implanted to form desired n-type lightly doped drain (Nldd) regions in the p-well region, including Nldd regions adjacent to edges of the gate electrode in the p-well region, the Pldd and Nldd regions thus being formed with the use of only a single ion implantation masking step. A semiconductor substrate and an integrated circuit are also disclosed.
摘要:
By providing heat dissipation elements or heat pipes in temperature critical areas of a semiconductor device, enhanced performance, reliability and packing density may be achieved. The heat dissipation elements may be formed on the basis of standard manufacturing techniques and may be positioned in close proximity to individual transistor elements and/or may be used for shielding particular circuit portions.
摘要:
Miniaturized complex transistor devices are formed with reduced leakage and reduced miller capacitance. Embodiments include transistors having reduced capacitance between the gate electrode and source/drain contact, as by utilizing a low-K dielectric constant sidewall spacer material. An embodiment includes forming a gate electrode on a semiconductor substrate, forming a sidewall spacer on the side surfaces of the gate electrode, forming source/drain regions by ion implantation, forming an interlayer dielectric over the gate electrode, sidewall spacers, and substrate, and forming a source/drain contact through the interlayer dielectric. The sidewall spacers and interlayer dielectric are then removed. A dielectric material, such as a low-K dielectric material, is then deposited in the gap between the gate electrode and the source/drain contact so that an air gap is formed, thereby reducing the parasitic “miller” capacitance.
摘要:
In a method of processing a semiconductor device, a silicide-blocking layer may be formed over a semiconductor material. After defining the silicide-blocking layer, impurities may be implanted into portions of the semiconductor material as defined by the silicide-blocking layer. After the implant, silicide may be formed in a surface region of the semiconductor material as permitted by the silicide-blocking layer. Regions of the impurity implant may comprise boundaries that are related to the outline of the silicide formed thereover. In a further embodiment, the implant may define a base region to a thyristor device. The implant may be performed with an angle of incidence to extend portions of the base region beneath a peripheral edge of the blocking mask. Next, an anode-emitter region may be formed using an implant of a substantially orthogonal angle of incidence and self-aligned to the mask. Epitaxial material may then be formed selectively over exposed regions of the semiconductor material as defined by the silicide-blocking mask. Silicide might also be formed after select exposed regions as defined by the silicide-blocking mask. The silicide-blocking mask may thus be used for alignment of implants, and also for defining epitaxial and silicide alignments.
摘要:
Semiconductor devices having a metal gate electrode and a titanium or tantalum nitride gate dielectric barrier layer and processes for fabricating such devices are provided. The use of a metal gate electrode along with a titanium or tantalum nitride gate dielectric barrier layer can, for example, provide a highly reliable semiconductor device having an increased operating speed as compared to conventional transistors.