Abstract:
A semiconductor electroplating process deposits copper into the through silicon via hole to completely fill the through silicon via in a substantially void free is disclosed. The through silicon via may be more than about 3 micrometers in diameter and more that about 20 micrometers deep. Low copper concentration and high acidity electroplating solution is used for deposition copper into the through silicon vias.
Abstract:
A semiconductor electroplating process deposits copper into the through silicon via hole to completely fill the through silicon via in a substantially void free is disclosed. The through silicon via may be more than about 3 micrometers in diameter and more that about 20 micrometers deep. High copper concentration and low acidity electroplating solution is used for deposition copper into the through silicon vias.
Abstract:
A semiconductor electroplating process deposits copper into the through silicon via hole to completely fill the through silicon via in a substantially void free is disclosed. The through silicon via may be more than about 3 micrometers in diameter and more that about 20 micrometers deep. High copper concentration and low acidity electroplating solution is used for deposition copper into the through silicon vias.
Abstract:
A semiconductor electroplating process deposits copper into the through silicon via hole to completely fill the through silicon via in a substantially void free is disclosed. The through silicon via may be more than about 3 micrometers in diameter and more that about 20 micrometers deep. High copper concentration and low acidity electroplating solution is used for deposition copper into the through silicon vias.
Abstract:
A semiconductor electroplating process deposits copper into the through silicon via hole to completely fill the through silicon via in a substantially void free is disclosed. The through silicon via may be more than about 3 micrometers in diameter and more that about 20 micrometers deep. High copper concentration and low acidity electroplating solution is used for deposition copper into the through silicon vias.
Abstract:
A semiconductor electroplating process deposits copper into the through silicon via hole to completely fill the through silicon via in a substantially void free is disclosed. The through silicon via may be more than about 3 micrometers in diameter and more that about 20 micrometers deep. High copper concentration and low acidity electroplating solution is used for deposition copper into the through silicon vias.
Abstract:
Apparatus and methods for electroplating metal onto substrates are disclosed. The electroplating apparatus comprise an electroplating cell and at least one oxidization device. The electroplating cell comprises a cathode chamber and an anode chamber separated by a porous barrier that allows metal cations to pass through but prevents organic particles from crossing. The oxidation device (ODD) is configured to oxidize cations of the metal to be electroplated onto the substrate, which cations are present in the anolyte during electroplating. In some embodiments, the ODD is implemented as a carbon anode that removes Cu(I) from the anolyte electrochemically. In other embodiments, the ODD is implemented as an oxygenation device (OGD) or an impressed current cathodic protection anode (ICCP anode), both of which increase oxygen concentration in anolyte solutions. Methods for efficient electroplating are also disclosed.
Abstract:
A substantially uniform layer of a metal is electroplated onto a work piece having a seed layer thereon. This is accomplished by employing a “high resistance ionic current source,” which solves the terminal problem by placing a highly resistive membrane (e.g., a microporous ceramic or fretted glass element) in close proximity to the wafer, thereby swamping the system's resistance. The membrane thereby approximates a constant current source. By keeping the wafer close to the membrane surface, the ionic resistance from the top of the membrane to the surface is much less than the ionic path resistance to the wafer edge, substantially compensating for the sheet resistance in the thin metal film and directing additional current over the center and middle of the wafer.
Abstract:
A ruthenium-containing thin film is formed. Typically, the ruthenium-containing thin film has a thickness in a range of about from 1 nm to 20 nm. The ruthenium-containing thin film is annealed in an oxygen-free atmosphere, for example, in N2 forming gas, at a temperature in a range of about from 100° C. to 500° C. for a total time duration of about from 10 seconds to 1000 seconds. Thereafter, copper or other metal is deposited by electroplating or electroless plating onto the annealed ruthenium-containing thin film. In some embodiments, the ruthenium-containing thin film is also treated by UV radiation.
Abstract translation:形成含钌的薄膜。 通常,含钌薄膜的厚度在约1nm至20nm的范围内。 含钌的薄膜在无氧气氛中,例如在N 2 O 2形成气体中,在约100℃至500℃的温度范围内退火,以便 总时间约10秒至1000秒。 此后,通过电镀或化学镀将铜或其它金属沉积到退火的含钌薄膜上。 在一些实施方案中,含钌的薄膜也通过UV辐射处理。
Abstract:
The orientation of a wafer with respect to the surface of an electrolyte is controlled during an electroplating process. The wafer is delivered to an electrolyte bath along a trajectory normal to the surface of the electrolyte. Along this trajectory, the wafer is angled before entry into the electrolyte for angled immersion. A wafer can be plated in an angled orientation or not, depending on what is optimal for a given situation. Also, in some designs, the wafer's orientation can be adjusted actively during immersion or during electroplating, providing flexibility in various electroplating scenarios.