Abstract:
A semiconductor package, comprising: a substrate; a first semiconductor chip; and at least one second semiconductor chip. The first semiconductor chip and the at least one second semiconductor chip are stacked on the substrate; the first semiconductor chip is electrically connected with the substrate; and an electrical connection of each second semiconductor chip is formed through a secondary input/output buffer of the first semiconductor chip.
Abstract:
A semiconductor chip package includes a signal interconnection penetrating a semiconductor chip and transmitting a signal to the semiconductor chip and a power interconnection and a ground interconnection penetrating the semiconductor and supplying power and ground to the semiconductor chip. The power interconnection and the ground interconnection are arranged to neighbor each other adjacent to the signal interconnection.
Abstract:
A three-dimensional (3D) semiconductor device including a plurality of stacked layers and a through-silicon via (TSV) electrically connecting the plurality of layers, in which in signal transmission among the plurality of layers, the TSV transmits a signal that swings in a range from an offset voltage that is higher than a ground voltage to a power voltage, thereby minimizing an influence of a metal-oxide-semiconductor (MOS) capacitance of TSV.
Abstract:
A method of manufacturing a stacked semiconductor package in which a plurality of semiconductor chips are stacked includes preparing a first semiconductor chip including a first semiconductor device, a first penetration electrode, and a first connection unit electrically connected to the first semiconductor device or the first penetration electrode, attaching the first semiconductor chip to a base substrate with the first connection unit interposed therebetween, forming a first rewiring pattern and a first protection layer on the first semiconductor chip by using a printing method, wherein the first rewiring pattern is electrically connected to the first penetration electrode and the first protection layer partially covers the first rewiring pattern and exposes other portions of the first rewiring pattern, and attaching a second semiconductor chip including a second semiconductor device to the first semiconductor chip to electrically connect the second semiconductor device to the first rewiring pattern.