摘要:
A compound semiconductor device includes a contact structure having a plurality of layers provided on a compound semiconductor layer and an electrode provided on the contact structure. The contact structure includes a first contact layer made of In.sub.x Ga.sub.1-x As (0.9.ltoreq.x.ltoreq.1) on the side closest to the electrode.
摘要翻译:化合物半导体器件包括具有设置在化合物半导体层上的多个层和设置在接触结构上的电极的接触结构。 接触结构包括在最靠近电极的一侧由In x Ga 1-x As(0.9 i> 1)制成的第一接触层。
摘要:
A composite oxide with a high oxygen storage capacity is provided without using cerium. The composite oxide is an iron oxide-zirconia composite oxide containing iron, zirconium, and a rare-earth element. The total content of Fe2O3, ZrO2, and an oxide of the rare-earth element is not less than 90 mass %, the content of an iron oxide in terms of Fe2O3 is 10 to 90 mass %, and the absolute value of the covariance COV(Fe, Zr+X) of the composite oxide, which has been baked in the atmosphere at a temperature of greater than or equal to 900° C. for 5 hours or more, is not greater than 20.
摘要:
A ceria-zirconia base composite oxide contains a composite oxide of ceria and zirconia. In the ceria-zirconia base composite oxide, a content ratio between cerium and zirconium in the composite oxide is in a range from 43:57 to 48:52 in terms of molar ratio ([cerium]:[zirconium]). An intensity ratio of a diffraction line at 2θ=14.5° to a diffraction line at 2θ=29° {I(14/29) value} and an intensity ratio of a diffraction line at 2θ=28.5° to the diffraction line at 2θ=29° {I(28/29) value}, which are calculated from an X-ray diffraction pattern obtained by an X-ray diffraction measurement using CuKa after heating under a temperature condition of 1100° C. in air for 5 hours, respectively satisfy the following conditions: I(14/29) value≧0.015, and I(28/29) value≦0.08.
摘要:
A catalyst for purification of exhaust gas, in which a noble metal is supported on a metal oxide support, has a basic site content of 1 mmol/L-cat or less, as determined on the basis of an amount of CO2 desorbed per liter of the catalyst as measured by a CO2 temperature-programmed desorption method.
摘要:
A semiconductor integrated circuit device includes: a rectangular shaped semiconductor substrate; a metal wiring layer formed on or over the semiconductor substrate; and a passivation layer covering the metal wiring layer. A corner non-wiring region where no portion of the metal wiring layer is formed is disposed in a corner of the semiconductor substrate. A slit is formed in a portion of the metal wiring layer which is close to the corner of the semiconductor substrate. The passivation layer includes a first passivation layer which is formed on the metal wiring layer and a second passivation layer which is formed on the first passivation layer. The first passivation layer is formed of a material that is softer than a material of the second passivation layer.
摘要:
There is provided a nut having a thread portion having a female thread, a metallic plate portion having a base segment, and a hardness gradient portion provided between the thread portion and the metallic plate portion. The thread portion, metallic plate portion and the hardness gradient portion are monolithic each other, a metallographic structure of the metallic plate portion differs from a metallographic structure of the thread portion and a hardness of the hardness gradient portion is lower than a hardness of the thread portion and lowers from the thread portion toward the metallic plate portion.
摘要:
The present invention provides a conductive polymer suspension for providing a conductive polymer material having a high conductivity and a method for producing the same, and in particular, a solid electrolytic capacitor having a low ESR and a method for producing the same. The conductive polymer suspension is produced by: synthesizing a conductive polymer by chemical oxidative polymerization of a monomer giving the conductive polymer by using an oxidant in a solvent containing a dopant consisting of a low-molecular organic acid or a salt thereof; purifying the conductive polymer; and mixing the purified conductive polymer and an oxidant in an aqueous solvent containing a polyacid component.
摘要:
The present invention provides a conductive polymer suspension for providing a conductive polymer material having a high conductivity and a method for producing the same, and in particular, a solid electrolytic capacitor having a low ESR and a method for producing the same. The conductive polymer suspension can be is produced by: synthesizing a conductive polymer by chemical oxidative polymerization of a monomer giving the conductive polymer by using an oxidant in an aqueous solvent containing a dopant consisting of a low-molecular organic acid or a salt thereof, or a polyacid having a weight average molecular weight of less than 2,000 or a salt thereof.
摘要:
An exemplary embodiment of the invention provides an electroconductive polymer composition having high electroconductivity which is suitable for a solid electrolytic capacitor, and provides a solid electrolytic capacitor having low ESR as well as low leakage current (LC). In an exemplary embodiment of the invention, an electroconductive polymer composition having high electroconductivity is formed by drying an electroconductive polymer suspension solution which comprises a polyanion having a cross-linked structure, an electroconductive polymer, and a solvent. In an exemplary embodiment of the invention, a solid electrolytic capacitor having low ESR as well as low LC is obtained by using the electroconductive polymer composition for a solid electrolyte layer that is an electroconductive polymer layer.
摘要:
The object of the present invention is to provide a compound having a glucokinase-activating effect.A pharmaceutical composition comprising a compound represented by the general formula (I) or a pharmaceutically acceptable salt thereof as an active ingredient: wherein X means a nitrogen atom or CR6, wherein R6 means a hydrogen atom or a halogen atom; R1 means a hydrogen atom, a C1-C6 alkyl group, a C1-C6 alkoxy group or a C1-C6 alkylthio group; R2 means a hydrogen atom or a fluorine atom; R3 means a hydrogen atom or a C1-C6 alkyl group; and one of R4 and R5 means a hydrogen atom or a C1-C6 alkyl group, and the other means a C1-C6 alkylenecarboxylic acid, a C1-C6 alkylsulfonyl group, a C1-C6 alkylcarbonyl group, or CONH2.