摘要:
A group III nitride semiconductor optical device 11a has a group III nitride semiconductor substrate 13 having a main surface 13a forming a finite angle with a reference plane Sc orthogonal to a reference axis Cx extending in a c-axis direction of the group III nitride semiconductor and an active layer 17 of a quantum-well structure, disposed on the main surface 13a of the group III nitride semiconductor substrate 13, including a well layer 28 made of a group III nitride semiconductor and a plurality of barrier layers 29 made of a group III nitride semiconductor. The main surface 13a exhibits semipolarity. The active layer 17 has an oxygen content of at least 1×1017 cm−3 but not exceeding 8×1017 cm−3. The plurality of barrier layers 29 contain an n-type impurity other than oxygen by at least 1×1017 cm−3 but not exceeding 1×1019 cm−3 in an upper near-interface area 29u in contact with a lower interface 28Sd of the well layer 28 on the group III nitride semiconductor substrate side.
摘要:
A III-nitride semiconductor device has a support base comprised of a III-nitride semiconductor and having a primary surface extending along a first reference plane perpendicular to a reference axis inclined at a predetermined angle with respect to a c-axis of the III-nitride semiconductor, and an epitaxial semiconductor region provided on the primary surface of the support base. The epitaxial semiconductor region includes GaN-based semiconductor layers. The reference axis is inclined at a first angle from the c-axis of the III-nitride semiconductor toward a first crystal axis, either the m-axis or a-axis. The reference axis is inclined at a second angle from the c-axis of the III-nitride semiconductor toward a second crystal axis, the other of the m-axis and a-axis. Morphology of an outermost surface of the epitaxial semiconductor region includes a plurality of pits. A pit density of the pits is not more than 5×104 cm−2.
摘要:
In the method of fabricating a quantum well structure which includes a well layer and a barrier layer, the well layer is grown at a first temperature on a sapphire substrate. The well layer comprises a group III nitride semiconductor which contains indium as a constituent. An intermediate layer is grown on the InGaN well layer while monotonically increasing the sapphire substrate temperature from the first temperature. The group III nitride semiconductor of the intermediate layer has a band gap energy larger than the band gap energy of the InGaN well layer, and a thickness of the intermediate layer is greater than 1 nm and less than 3 nm in thickness. The barrier layer is grown on the intermediate layer at a second temperature higher than the first temperature. The barrier layer comprising a group III nitride semiconductor and the group III nitride semiconductor of the barrier layer has a band gap energy larger than the band gap energy of the well layer.
摘要:
Provided is a group-III nitride semiconductor laser device with a laser cavity allowing for a low threshold current, on a semipolar surface of a support base in which the c-axis of a hexagonal group-III nitride is tilted toward the m-axis. First and second fractured faces 27, 29 to form the laser cavity intersect with an m-n plane. The group-III nitride semiconductor laser device 11 has a laser waveguide extending in a direction of an intersecting line between the m-n plane and the semipolar surface 17a. For this reason, it is feasible to make use of emission by a band transition enabling the low threshold current. In a laser structure 13, a first surface 13a is opposite to a second surface 13b. The first and second fractured faces 27, 29 extend from an edge 13c of the first surface 13a to an edge 13d of the second surface 13b. The fractured faces are not formed by dry etching and are different from conventionally-employed cleaved facets such as c-planes, m-planes, or a-planes.
摘要:
A nitride-based semiconductor light-emitting element LE1 or LD1 has: a gallium nitride substrate 11 having a principal surface 11a which makes an angle α, in the range 40° to 50° or in the range more than 90° to 130°, with the reference plane Sc perpendicular to the reference axis Cx extending in the c axis direction; an n-type gallium nitride-based semiconductor layer 13; a second gallium nitride-based semiconductor layer 17; and a light-emitting layer 15 including a plurality of well layers of InGaN and a plurality of barrier layers 23 of a GaN-based semiconductor, wherein the direction of piezoelectric polarization of the plurality of well layers 21 is the direction from the n-type gallium nitride-based semiconductor layer 13 toward the second gallium nitride-based semiconductor layer 17.
摘要:
A group-III nitride semiconductor laser device comprises a laser structure including a support base and a semiconductor region, and an electrode provided on the semiconductor region of the laser structure. The support base comprises a hexagonal group-III nitride semiconductor and has a semipolar primary surface, and the semiconductor region is provided on the semipolar primary surface of the support base. The semiconductor region includes a first cladding layer of a first conductivity type gallium nitride-based semiconductor, a second cladding layer of a second conductivity type gallium nitride-based semiconductor, and an active layer. The first cladding layer, the second cladding layer, and the active layer are arranged along a normal axis to the semipolar primary surface. The active layer comprises a gallium nitride-based semiconductor layer. The c-axis of the hexagonal group-III nitride semiconductor of the support base tilts at a finite angle ALPHA with respect to a normal axis toward an a-axis of the hexagonal group-III nitride semiconductor. The laser structure includes first and second fractured faces intersecting with an a-n plane defined by the normal axis and the a-axis of the hexagonal group-III nitride semiconductor. The laser cavity of the group-III nitride semiconductor laser device includes the first and second fractured faces. The laser structure includes first and second surfaces and the first surface is opposite to the second surface, and each of the first and second fractured faces extends from an edge of the first surface to an edge of the second surface.
摘要:
Provided is a III-nitride semiconductor laser diode capable of lasing to emit light of not less than 500 nm with use of a semipolar plane. Since an active layer 29 is provided so as to generate light at the wavelength of not less than 500 nm, the wavelength of light to be confined into a core semiconductor region 19 is a long wavelength. A first optical guide layer 27 is provided with a two-layer structure, and a second optical guide layer 31 is provided with a two-layer structure. A material of a cladding layer 21 comprised of at least either of AlGaN and InAlGaN is different from the III-nitride semiconductor, and the thickness D15 of a first epitaxial semiconductor region 15 is larger than the thickness D19 of the core semiconductor region 19; however, the misfit dislocation densities at first to third interfaces J1, J2 and J3 are not more than 1×106 cm−1, thereby preventing lattice relaxation from occurring in the semiconductor layers at these interfaces J1, J2 and J3 because of the c-plane that acts as a slip plane.
摘要:
A III-nitride semiconductor device has a support base comprised of a III-nitride semiconductor and having a primary surface extending along a first reference plane perpendicular to a reference axis inclined at a predetermined angle ALPHA with respect to the c-axis of the III-nitride semiconductor, and an epitaxial semiconductor region provided on the primary surface of the support base. The epitaxial semiconductor region includes a plurality of GaN-based semiconductor layers. The reference axis is inclined at a first angle ALPHA1 in the range of not less than 10 degrees, and less than 80 degrees from the c-axis of the III-nitride semiconductor toward a first crystal axis, either one of the m-axis and a-axis. The reference axis is inclined at a second angle ALPHA2 in the range of not less than −0.30 degrees and not more than +0.30 degrees from the c-axis of the III-nitride semiconductor toward a second crystal axis, the other of the m-axis and a-axis. The predetermined angle, the first angle, and the second angle have a relation of ALPHA=(ALPHA12+ALPHA22)1/2. Morphology of an outermost surface of the epitaxial semiconductor region includes a plurality of pits. A pit density of the pits is not more than 5×104 cm−2.
摘要:
Provided is a nitride-based semiconductor light-emitting element having improved carrier injection efficiency into the well layer. The element comprises a substrate (5) formed from a hexagonal-crystal gallium nitride semiconductor; an n-type gallium nitride semiconductor region (7) disposed on a main surface (S1) of the substrate (5); a light-emitting layer (11) having a single quantum well structure disposed on the n-type gallium nitride semiconductor region (7); and a p-type gallium nitride semiconductor region (19) disposed on the light-emitting layer (11). The light-emitting layer (11) is disposed between the n-type gallium nitride semiconductor region (7) and the p-type gallium nitride semiconductor region (19). The light-emitting layer (11) comprises a well layer (15), a barrier layer (13), and a barrier layer (17). The well layer (15) is InGaN. The main surface (S1) extends, from a surface perpendicular to the c axial direction of the hexagonal-crystal gallium nitride semiconductor, along a reference plane (S5) inclined at an angle of inclination within a range between 63° and 80° or between 100° and 117°.
摘要:
In a GaN based semiconductor optical device 11a, the primary surface 13a of the substrate 13 tilts at a tilting angle toward an m-axis direction of the first GaN based semiconductor with respect to a reference axis “Cx” extending in a direction of a c-axis of the first GaN based semiconductor, and the tilting angle is 63 degrees or more, and is less than 80 degrees. The GaN based semiconductor epitaxial region 15 is provided on the primary surface 13a. On the GaN based semiconductor epitaxial region 15, an active layer 17 is provided. The active layer 17 includes one semiconductor epitaxial layer 19. The semiconductor epitaxial layer 19 is composed of InGaN. The thickness direction of the semiconductor epitaxial layer 19 tilts with respect to the reference axis “Cx.” The reference axis “Cx” extends in the direction of the [0001] axis. This structure provides the GaN based semiconductor optical device that can reduces decrease in light emission characteristics due to the indium segregation.