摘要:
The present invention includes an illuminance adjustment step of setting an optimum illuminance of the illumination; and a defect inspection step of picking up the image of the substrate illuminated with the illumination at the optimum illuminance, wherein the illuminance adjustment step has: a first step of applying illuminations at different illuminances to a plurality of measurement regions on a front surface of the substrate and picking up an image of each of the measurement regions, while moving the substrate; a second step of making a luminance of the picked up image of each of the measurement regions into a histogram to find a reference luminance where an integral value from a maximum luminance side of the histogram is a predetermined value; and a third step of calculating a correlation between each of the reference luminances and the illuminance, and setting based on the correlation an illuminance at which the reference luminance coincides with a predetermined luminance, as the optimum illuminance.
摘要:
According to one embodiment, a supercritical drying apparatus comprises a chamber being hermetically sealable and configured to store a semiconductor substrate, a heater configured to heat an inner side of the chamber, a supply unit configured to supply carbon dioxide to the chamber, a discharge unit configured to discharge carbon dioxide from the chamber, and a rotation unit configured to rotate the chamber by an angle equal to or greater than 90 degrees and equal to or smaller than 180 degrees with respect to the horizontal direction.
摘要:
According to one embodiment, a method for cleaning a semiconductor substrate comprises supplying water vapor to a surface of a semiconductor substrate on which a concave-convex pattern is formed while heating the semiconductor substrate at a predetermined temperature, cooling the semiconductor substrate after stopping the heating and the supply of the water vapor and freezing water on the semiconductor substrate, after freezing the water, supplying pure water onto the semiconductor substrate and melting a frozen film, and after melting the frozen film, drying the semiconductor substrate.
摘要:
According to one embodiment, a supercritical drying method comprises cleaning a semiconductor substrate with a chemical solution, rinsing the semiconductor substrate with pure water after the cleaning, changing a liquid covering a surface of the semiconductor substrate from the pure water to alcohol by supplying the alcohol to the surface after the rinsing, guiding the semiconductor substrate having the surface wetted with the alcohol into a chamber, discharging oxygen from the chamber by supplying an inert gas into the chamber, putting the alcohol into a supercritical state by increasing temperature in the chamber to a critical temperature of the alcohol or higher after the discharge of the oxygen, and discharging the alcohol from the chamber by lowering pressure in the chamber and changing the alcohol from the supercritical state to a gaseous state. The chamber contains SUS. An inner wall face of the chamber is subjected to electrolytic polishing.
摘要:
In one embodiment, a surface treatment apparatus for a semiconductor substrate includes a holding unit, a first supply unit, a second supply unit, a third supply unit, a drying treatment unit, and a removal unit. The holding unit holds a semiconductor substrate with a surface having a convex pattern formed thereon. The first supply unit supplies a chemical solution to the surface of the semiconductor substrate, to perform cleaning and oxidation. The second supply unit supplies pure water to the surface of the semiconductor substrate, to rinse the semiconductor substrate. The third supply unit supplies a water repelling agent to the surface of the semiconductor substrate, to form a water repellent protective film on the surface of the convex pattern. The drying treatment unit dries the semiconductor substrate. The removal unit removes the water repellent protective film while making the convex pattern remain.
摘要:
According to an embodiment, a supercritical drying method includes: introducing a semiconductor substrate of which a surface is wet with a supercritical displacement solvent into a chamber; supplying a first supercritical fluid being based on first carbon dioxide to the chamber; supplying a second supercritical fluid which is based on second carbon dioxide to the chamber, after the supplying of the first supercritical fluid; and lowering an inside pressure of the chamber to gasify the second supercritical fluid and to discharge the gasified second supercritical fluid from the chamber. The first carbon dioxide is generated by recovering and recycling the carbon dioxide discharged from the chamber. The second carbon dioxide contains no supercritical displacement solvent or contains the supercritical displacement solvent in a concentration lower than that in the first carbon dioxide.
摘要:
A method has been disclosed which cleans a semiconductor substrate using a cleaning liquid produced by mixing bubbles of a gas into an acid solution in which the gas has been dissolved to the saturated concentration and which brings the zeta potentials of the semiconductor substrate and adsorbed particles into the negative region by the introduction of an interfacial active agent. Alternatively, a semiconductor substrate is cleaned using a cleaning liquid produced by mixing bubbles of a gas into an alkaline solution in which the gas has been dissolved to the saturated concentration and whose pH is 9 or more.
摘要:
A template cleaning method for cleaning a template for nanoimprint, according to an embodiment of the present invention includes placing a wafer on a stage provided in a chamber, cleaning the wafer placed on the stage, inspecting the wafer for particles after the cleaning of the wafer, placing the template on the stage after the inspection of the wafer, and cleaning the template placed on the stage.
摘要:
According to one embodiment, a method is disclosed for chemical planarization. The method can include forming a surface layer on a to-be-processed film having irregularity. The surface layer binds to or adsorbs onto the to-be-processed film along the irregularity to suppress dissolution of the to-be-processed film. The method can include planarizing the to-be-processed film in a processing solution dissolving the to-be-processed film, by rotating the to-be-processed film and a processing body while the to-be-processed film contacting the processing body via the surface layer, removing the surface layer on convex portions of the irregularity while leaving the surface layer on concave portions of the irregularity and making dissolution degree of the convex portions larger than dissolution degree of the concave portions.
摘要:
There is provided a pretensioner. The pretensioner includes: a pipe; a gas generator that generates a gas in the pipe in an emergency case; a gas generator mount on which the gas generator is mounted; a spool driving mechanism that rotates a spool in a direction to retract a seatbelt by the gas generated by the gas generator in the emergency case; a discharge hole formed in the pipe so as to allow communication between inside and outside of the pipe; and a blocking member configured to block the discharge hole from inside of the pipe, the blocking member being configured to open the discharge hole when the blocking member is pressed from outside of the pipe with a pressing force equal to or greater than a given pressing force.