摘要:
A GaN single crystal having a full width at half-maximum of the double-crystal X-ray rocking curve of 5-250 sec and a thickness of not less than 80 .mu.m, a method for producing the GaN single crystal having superior quality and sufficient thickness permitting its use as a substrate and a semiconductor light emitting element having high luminance and high reliability, comprising, as a substrate, the GaN single crystal having superior quality and/or sufficient thickness permitting its use as a substrate.
摘要:
A GaN single crystal having a full width at half-maximum of the double-crystal X-ray rocking curve of 5-250 sec and a thickness of not less than 80 .mu.m, a method for producing the GaN single crystal having superior quality and sufficient thickness permitting its use as a substrate and a semiconductor light emitting element having high luminance and high reliability, comprising, as a substrate, the GaN single crystal having superior quality and/or sufficient thickness permitting its use as a substrate.
摘要:
A group-III nitride based light emitter such as LED and LD, which has a double heterostructure and which comprises a diffusion suppressive layer between a p-type cladding layer and an active layer. The diode having a diffusion suppressive layer of the present invention has higher luminous intensity, greater forward voltage, and longer lifetime than the conventional diodes.
摘要:
A semiconductor light receiving element having a light receiving layer (1) formed from a GaN group semiconductor, and an electrode (2) formed on one surface of the light receiving layer as a light receiving surface (1a) in such a way that the light (L) can enter the light receiving layer is provided. When the light receiving element is of a Schottky barrier type, the aforementioned electrode (2) contains at least a Schottky electrode, which is formed in such a way that, on the light receiving surface (1a), the total length of the boundary lines between areas covered with the Schottky electrode and exposed areas is longer than the length of the outer periphery of the light receiving surface (1a). In addition, when the light receiving element is of a photoconductive type, the aforementioned light receiving layer (1) is a first conductivity type i layer, and the aforementioned electrode (2) is an ohmic electrode of one polarity, and an ohmic electrode of the other polarity is formed directly or via a first conductivity type and low resistance GaN group semiconductor layer on the other surface of the light receiving layer (1).
摘要:
A GaN group crystal base member comprising a base substrate, a mask layer partially covering the surface of said base substrate to give a masked region, and a GaN group crystal layer grown thereon to cover the mask layer, which is partially in direct contact with the non-masked region of the base substrate, use thereof for a semiconductor element, manufacturing methods thereof and a method for controlling a dislocation line. The manufacturing method of the present invention is capable of making a part in the GaN group crystal layer, which is above a masked region or non-masked region, have a low dislocation density.
摘要:
A semiconductor light emitting element comprising a light emitting part comprising an AlGaInP active layer and a AlGaInP cladding layer, which is formed on a GaAs substrate, and an AlGaAs layer and a Ga.sub.x In.sub.1-x P layer (0.7.ltoreq.x.ltoreq.1.0) deposited in this order on said light emitting part, wherein said Ga.sub.x In.sub.1-x P layer has a thickness of not more than 1.0 .mu.m. According to the present invention, absorption of the emitted light by an electrode contact layer and the occurrence of an interfacial distortion between the electrode contact layer and the layer thereunder can be suppressed, and a semiconductor light emitting element permitting easy production thereof and having a high luminance and a long service life can be provided.
摘要:
The state of a surface of a substrate 11 or a GaN group compound semiconductor film 12 formed on the substrate 11 is modified with an anti-surfactant material and a GaN group compound semiconductor material is supplied by a vapor phase growth method to form dot structures made of the GaN group compound semiconductor on the surface of the semiconductor film 12, and the growth is continued until the dot structures join and the surface becomes flat. In this case, the dot structures join while forming a cavity 21 on an anti-surfactant region. A dislocation line 22 extending from the underlayer is blocked by the cavity 21, and therefore, the dislocation density of an epitaxial film surface can be reduced. As a result, the dislocation density of the GaN group compound semiconductor crystal can be reduced without using a masking material in the epitaxial growth, whereby a high quality epitaxial film can be obtained.
摘要:
The state of a surface of a substrate 11 or a GaN group compound semiconductor film 12 formed on the substrate 11 is modified with an anti-surfactant material and a GaN group compound semiconductor material is supplied by a vapor phase growth method to form dot structures made of the GaN group compound semiconductor on the surface of the semiconductor film 12, and the growth is continued until the dot structures join and the surface becomes flat. In this case, the dot structures join while forming a cavity 21 on an anti-surfactant region. A dislocation line 22 extending from the underlayer is blocked by the cavity 21, and therefore, the dislocation density of an epitaxial film surface can be reduced. As a result, the dislocation density of the GaN group compound semiconductor crystal can be reduced without using a masking material in the epitaxial growth, whereby a high quality epitaxial film can be obtained.
摘要:
As shown in FIG. 1(a), substrate 1 having a growth plane having a concavo-convex surface is used. When GaN group crystal is vapor phase grown using this substrate, the concavo-convex shape suppresses growth in the lateral direction and promotes growth in the C axis direction, thereby affording a base surface capable of forming a facet plane. Thus, as shown in FIG. 1(b), a crystal having a facet plane is grown in a convex part, and a crystal is also grown in a concave part. When the crystal growth is continued, the films grown from the convex part and the concave part are joined in time to cover a concavo-convex surface and become flat as shown in FIG. 1(c). In this case, an area having a low a dislocation density is formed in the upper part of the convex part where facet plane was formed, and the prepared film has high quality.
摘要:
A semiconductor light emitting element comprising an n-type semiconductor substrate and a light emitting part comprising an n-type cladding layer composed of an InGaAlP compound semiconductor material, an active layer and a p-type cladding layer formed in that order from the substrate side by double heterojunction, wherein said semiconductor light emitting element satisfies at least one of the following conditions: A. the thickness of said active layer being greater than 0.75 .mu.m and not more than 1.5 .mu.m, and B. the thickness of said p-type cladding layer being 0.5 .mu.m-2.0 .mu.m. According to the light emitting element of the present invention, an overflow of electron into the p-type cladding layer can be suppressed by setting the thickness of the active layer and the p-type cladding layer to fall within the above-mentioned specific ranges, as a result of which the element shows luminous efficiency peaked within the specified range.